Efficient Acoustic Topology Optimization Using Vibro-Acoustic Coupled Craig–Bampton Mode Synthesis


Continuum topology optimization is an effective way to reduce vibration and noise of vibro-acoustic coupling system. However, the high computation time required for calculating the vibro-acoustic responses during topology optimization is a major obstacle for practical applications. In this paper, a novel symmetric method of vibro-acoustic system matrix is proposed, and a new model reduction method is developed based on Craig–Bampton mode synthesis method to compute dynamic responses with adequate efficiency and accuracy for topology optimization. The comparison results show that the proposed method substantially reduces the degrees of freedom (DOFs) and calculation time. The response values and eigenfrequencies calculated by the model reduction method are exactly the same as those of the full model. Furthermore, the bidirectional evolutionary structural optimization (BESO) algorithm is applied to solve the problem of minimizing the response of a single frequency and a certain range of frequency excitation at a specified target point. The results show that the optimization algorithm converges fast, the iterative process is robust and the response values of different coupling systems can be reduced to a higher extend, which indicates the applicability of the optimization algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Akl, W., El, S.A., Al, M.K., et al.: Topology optimization of a plate coupled with acoustic cavity. Int. J. Solids Struct. 46, 2060–2074 (2009)

    Article  Google Scholar 

  2. 2.

    Vicente, W.M., Picelli, R., Pavanello, R., et al.: Topology optimization of frequency responses of fluid–structure interaction systems. Finite Elem. Anal. Des. 98, 1–13 (2015)

    Article  Google Scholar 

  3. 3.

    Chen, L.L., Liu, L.C., Zhao, W.C., et al.: 2D Acoustic design sensitivity analysis based on adjoint variable method using different types of boundary elements. Acoust Aust 44, 343–357 (2016)

    Article  Google Scholar 

  4. 4.

    Xu, Z.S., Huang, Q.B., Zhao, Z.G.: Topology optimization of composite material plate with respect to sound radiation. Eng. Anal. Boundary Elem. 35, 61–67 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Yoon, G.H., Jensen, J.S., Sigmund, O.: Topology optimization of acoustic structure interaction problems using a mixed finite element formulation. Int. J. Numer. Meth. Eng. 70, 1049–1075 (2007)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chu, D.N., Xie, Y.M., Hira, A., et al.: Evolutionary structural optimization for problems with stiffness constraints. Finite Elem. Anal. Des. 1996(21), 239–251 (1996)

    Article  Google Scholar 

  7. 7.

    Jensen, J.S.: Topology optimization of dynamics problems with PADE approximants. Int. J. Numer. Meth. Eng. 72, 1605–1630 (2010)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Allaire, G., Michailidis, G.: Modal basis approaches in shape and topology optimization of frequency response problems. Int. J. Numer. Methods Eng. 113, 1258–1299 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kang, Z., Zhang, X., Jiang, S., et al.: On topology optimization of damping layer in shell structures under harmonic excitations. Struct. Multidiscipl. Optim. 46, 51–67 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Choi, W.S., Park, G.J.: Structural optimization using equivalent static loads at all time intervals. Comput. Methods Appl. Mech. Eng. 191, 2105–2122 (2002)

    Article  Google Scholar 

  11. 11.

    Zhao, J., Wang, C.: Dynamic response topology optimization in the time domain using model reduction method. Struct. Multidiscipl. Optim. 53, 101–114 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lee, H.A., Park, G.J.: Nonlinear dynamic response topology optimization using the equivalent static loads method. Comput. Methods Appl. Mech. Eng. 283, 956–970 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Teng, X.Y., Jiang, X.D., Sun, Y.X., et al.: Structural topology optimization using equivalent static load and mode tracking. J. Vib. Eng. 3, 349–356 (2017)

    Google Scholar 

  14. 14.

    Craig, J.R.R., Bampton, M.C.: Coupling of subcomponents for dynamic analyses. AIAA J. 6, 1313–1319 (1968)

    Article  Google Scholar 

  15. 15.

    Kim, J.G., Lee, P.S.: An enhanced Craig–Bampton method. Int. J. Numer. Methods Eng. 103, 79–93 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Go, M.S., Lim, J.H., Kim, J.G., Hwang, K.R.: A family of craig–bampton methods considering residual mode compensation. Appl. Math. Comput. 369, 1–15 (2020)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Herrmann, J., Maess, M., Gaul, L.: Substructuring including interface reduction for the efficient vibro-acoustic simulation of fluid-filled piping systems. Mech. Syst. Signal Process. 24, 153–163 (2010)

    Article  Google Scholar 

  18. 18.

    Maess, M., Gaul, L.: Substructuring and model reduction of pipe components interacting with acoustic fluids. Mech. Syst. Signal Process. 20, 45–64 (2006)

    Article  Google Scholar 

  19. 19.

    Kim, S.M., Kim, J.G., Chae, S.W., et al.: A strongly coupled model reduction of vibro-acoustic interaction. Comput. Methods Appl. Mech. Eng. 347, 495–516 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Morand, H.J.P., Roger, O.: Fluid Structure Interaction-Applied Numerical Methods. Wiley, Paris (1995)

    Google Scholar 

  21. 21.

    Sandberg, G., Wernberg, P.A., Davidsson, P.: Fundamentals of Fluid–Structure Interaction, vol. 505. Springer, Vienna (2008)

    Google Scholar 

  22. 22.

    Du, J.B., Wang, X.C.: Fluid–structure coupling dynamic characteristic analysis for rotationally periodic liquidfilled vessel (I). J. Tsinghua 39, 108–111 (1999)

    Google Scholar 

  23. 23.

    Du, J.B., Wang, X.C.: Fluid–structure coupling dynamic characteristic analysis for rotationally periodic liquid-filled vessel (II). J. Tsinghua 39, 112–116 (1999)

    Google Scholar 

  24. 24.

    Huang, X., Xie, Y.M.: Convergent and mesh independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)

    Article  Google Scholar 

Download references


This study is supported by the Chinese National Natural Science Fund (No. 11602300).

Author information



Corresponding author

Correspondence to Xudong Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, D. & Liu, B. Efficient Acoustic Topology Optimization Using Vibro-Acoustic Coupled Craig–Bampton Mode Synthesis. Acoust Aust 48, 407–418 (2020). https://doi.org/10.1007/s40857-020-00194-2

Download citation


  • Model reduction
  • Vibro-acoustic interaction
  • Topology optimization
  • Multiobjective optimization
  • Frequency response
  • BESO