Acoustics Australia

, Volume 46, Issue 1, pp 131–142 | Cite as

Two-Step Inversion of Geoacoustic Parameters with Bottom Reverberation and Transmission Loss in the Deep Ocean

  • Kunde Yang
  • Liya Xu
  • Qiulong Yang
  • Ganxian Li


The parameters of deep ocean sediments are relevant for accurately predicting the sound field; however, it is difficult to measure the parameters in situ. Most inversion methods used in shallow water are inapplicable in the deep ocean because of the considerable differences in propagation characteristics. At present, no method for simultaneously obtaining sound speed, density, and attenuation that considers the sensitivity of sediment parameters is yet available. This study proposes a two-step inversion of geoacoustic parameters in the deep ocean. On the basis of the half-space model, the decline tendency of bottom reverberation level with travel time is used for the inversion of sound speed and density, whereas transmission loss is used for inversion of attenuation. Inversion results can be practical for acoustic applications when this method is used. Experimental data from the South China Sea in the summer of 2014 are processed during the inversion process. The sediment parameters obtained from the inversion process are close to the laboratory-measured sampling values and may be used to predict the sound field in various applications, such as in transmission loss in the deep ocean.


Bottom reverberation Transmission loss Inversion Deep ocean 


43.30.-k 43.30.Ma 43.30.Pc 43.60.Pt 



We thank all the researchers and staff for their help in the research program of the South China Sea in summer 2014. We also appreciate the reviewer for the comments and suggestions, which are highly insightful and very helpful for improving this manuscript.


  1. 1.
    Prior, M.K., Harrison, C.H.: Estimation of seabed reflection loss properties from direct blast pulse shape. J. Acoust. Soc. Am. 116(3), 1341–1344 (2004)CrossRefGoogle Scholar
  2. 2.
    Yang, K., Ma, Y.: A geoacoustic inversion method based on bottom reflection signals. Acta Phys. Sin. 58(3), 1798–1805 (2009)Google Scholar
  3. 3.
    Guo, X., Yang, K., Ma, Y., Yang, Q.: Geoacoustic inversion based on modal dispersion curve for range-dependent environment. Chin. Phys. Lett. 32(12), 74–77 (2015)CrossRefGoogle Scholar
  4. 4.
    Guo, X., Yang, K., Ma, Y.: A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Phys. Sin. 64(17), 174302-1–174302-9 (2015)Google Scholar
  5. 5.
    Gerstoft, P., Ellis, D.D.: Application of multifrequency inversion methods to obtain seabed properties from broadband reverberation data. J. Acoust. Soc. Am. 100(4), 2665–2665 (1996)CrossRefGoogle Scholar
  6. 6.
    Zhou, J., Guan, D., Shang, E., Luo, E.: Long-range reverberation and bottom scattering strength in shallow water. Chin. J. Acoust. 6(1), 151–153 (1982)Google Scholar
  7. 7.
    Yang, K., Ma, Y., Sun, C., Miller, J.H., Potty, G.R.: Multistep matched-field inversion for broad-band data from ASIAEX2001. IEEE J. Ocean. Eng. 29(4), 964–972 (2005)CrossRefGoogle Scholar
  8. 8.
    Yang, K., Chapman, N.R., Ma, Y.: Estimating parameter uncertainties in matched field inversion by a neighborhood approximation algorithm. J. Acoust. Soc. Am. 121(2), 833–843 (2007)CrossRefGoogle Scholar
  9. 9.
    Chapman, N.R.: Modeling ocean-bottom reflection loss measurements with the plane-wave reflection coefficient. J. Acoust. Soc. Am. 73(5), 1601–1607 (1983)CrossRefGoogle Scholar
  10. 10.
    Dong, H., Chapman, N.R., Hannay, D.E., Dosso, S.E.: Estimation of seismic velocities of upper oceanic crust from ocean bottom reflection loss data. J. Acoust. Soc. Am. 127(4), 2182–2192 (2010)CrossRefGoogle Scholar
  11. 11.
    Yang, K., Xiao, P., Duan, R., Ma, Y.: Bayesian inversion for geoacoustic parameters from ocean bottom reflection loss. J. Comput. Acoust. 25(3), 1750019-1–1750019-17 (2017)MathSciNetGoogle Scholar
  12. 12.
    Shuanglin, W., Li, Z., Qin, J.: Geoacoustic inversion for bottom parameters in the deep-water area of the South China Sea. Chin. Phys. Lett. 32(12), 70–73 (2015)Google Scholar
  13. 13.
    Guo, X., Yang, K., Ma, Y.: Geoacoustic inversion for bottom parameters via Bayesian theory in deep ocean. Chin. Phys. Lett. 34(03), 68–72 (2017)Google Scholar
  14. 14.
    Ellis, D.D., Crowe, D.V.: Bistatic reverberation calculations using a three-dimensional scattering function. J. Acoust. Soc. Am. 89(5), 2207–2214 (1991)CrossRefGoogle Scholar
  15. 15.
    Jackson, D.R., Winebrenner, D.P., Ishimaru, A.: Application of the composite roughness model to high-frequency bottom backscattering. J. Acoust. Soc. Am. 79(5), 1410–1422 (1986)CrossRefGoogle Scholar
  16. 16.
    Jackson, D.R., Briggs, K.B.: High-frequency bottom backscattering: roughness versus sediment volume scattering. J. Acoust. Soc. Am. 92(92), 962–977 (1992)CrossRefGoogle Scholar
  17. 17.
    Williams, K.L., Jackson, D.R.: Bistatic bottom scattering: model, experiments, and model/data comparison. J. Acoust. Soc. Am. 103(1), 169–181 (1997)CrossRefGoogle Scholar
  18. 18.
    Porter, M.B.: The Bellhop Manual and User’s Guide: Preliminary Draft, pp. 17–20. Heat, Light, and Sound Research, Inc, LaJolla (2011)Google Scholar
  19. 19.
    Argyris, J.H., Scharpf, D.W.: Finite elements in time and space. Nucl. Eng. Des. 10(4), 456–464 (1969)CrossRefGoogle Scholar
  20. 20.
    Harrsion, C.H.: Fast bistatic signal-to-reverberation-ratio calculation. J. Comput. Acoust. 13(02), 317–340 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M., Johnson, D.R.: World Ocean Altas 2009 Volume 1: Temperature. U.S. Government Printing Office, Washington DC (2009)Google Scholar
  22. 22.
    Antonov, J.I., Seidov, D., Boyer, T.P., Locarnini, R.A., Mishonov, A.V., Garcia, H.E.: World Ocean Altas 2009 Volume 1: Salinity. U.S. Government Printing Office, Washington DC (2009)Google Scholar
  23. 23.
    Zhang, X., Cheng, C., Liu, Y.: Acoustic propagation effect caused by subtropical mode water of northwestern Pacific. Acta Oceanol. Sin. 36(9), 94–102 (2014)Google Scholar
  24. 24.
    Hamilton, E.L., Bachman, R.T.: Sound velocity and related properties of marine sediments. J. Acoust. Soc. Am. 72(6), 1891–1904 (1982)CrossRefGoogle Scholar
  25. 25.
    Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Q. Rev. Biol. 6(2), 126–137 (1992)Google Scholar
  26. 26.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4(8), 1942–1948 (1995)Google Scholar
  27. 27.
    Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans. Evol. Comput. 11(5), 561–578 (2007)CrossRefGoogle Scholar
  28. 28.
    Ling, S.H., Iu, H.H.C., Leung, F.H.F., Chan, K.Y.: Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging. IEEE Trans. Industr. Electron. 55(9), 3447–3460 (2008)CrossRefGoogle Scholar
  29. 29.
    Hamilton, E.L.: Variations of density and porosity with depth in deep-sea sediments. J. Sediment. Res. 46(2), 280–300 (1976)Google Scholar

Copyright information

© Australian Acoustical Society 2018

Authors and Affiliations

  • Kunde Yang
    • 1
    • 2
  • Liya Xu
    • 1
    • 2
  • Qiulong Yang
    • 1
    • 2
  • Ganxian Li
    • 3
  1. 1.School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University)Ministry of Industry and Information TechnologyXi’anChina
  3. 3.CAS Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyGuangzhouChina

Personalised recommendations