Acoustics Australia

, Volume 46, Issue 2, pp 193–203 | Cite as

Underwater Sound Source Localization by EMD-Based Maximum Likelihood Method

  • B Marxim Rahula Bharathi
  • A R Mohanty
Original Paper


The underwater object localization is important in defense, underwater biological and environmental applications. Localization using a passive sonar system is a challenging task. It is more challenging when the source and receivers are in the reverberant environment. Time delay estimation (TDE)-based localization is a well-known technique to localize source for last few decades. In this work, empirical mode decomposition maximum likelihood (EMD ML TDE) method is used to estimate the time delay in a reverberant environment. The sound source location is estimated by intersecting spherical surfaces from the time delay. The experimental results prove that EMD ML time delay estimation method is effective to localize a sound source in a reverberant environment.


Empirical mode decomposition EMD ML TDE Generalized cross-correlation Localization TDE Reverberant environment SNR 


  1. 1.
    Zhang, C., et al.: Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings. IEEE Trans. Multimed. 10, 538–548 (2008)CrossRefGoogle Scholar
  2. 2.
    Valin, J.M., Michaud, F., Hadjou, B., Rouat, J.: Localization of simultaneous moving sound sources for mobile robot using a frequency-domain steered beamformer approach. IEEE Int. Conf. Robot. Autom. Proc. 1, 1033–1038 (2004)Google Scholar
  3. 3.
    DiBiase, J.H., Silverman, H.F., Brandstein, M.S.: Robust localization in reverberant rooms. Microphone Arrays, pp. 157–180. Springer, Berlin (2001)CrossRefGoogle Scholar
  4. 4.
    Argentieri, S., Danes, P.: Broadband variations of the MUSIC high-resolution method for sound source localization in robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. (2007)Google Scholar
  5. 5.
    Asano, F., Goto, M., Itou, K., Asoh, H.: Real-time sound source localization and separation system and its application to automatic speech recognition. Seventh European Conference on Speech Communication and Technology. (2001)Google Scholar
  6. 6.
    Duan, R., Yang, K., Ma, Y.: Narrowband source localisation in the deep Ocean using a near-surface array. Acoustics Australia 42(1), 36–42 (2014)Google Scholar
  7. 7.
    Yang, K., Lu, Y., Lei, Z., Xia, H.: Passive localization based on multipath time-delay difference with two hydrophones in deep Ocean. Acoustics Australia 45(1), 51–60 (2017)CrossRefGoogle Scholar
  8. 8.
    Schau, H.C., Robinson, A.Z.: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1223–1225 (1987)CrossRefGoogle Scholar
  9. 9.
    Wang, H., Chu, P.: Voice source localization for automatic camera pointing system in videoconferencing. IEEE Int. Conf. Acoustics Speech Signal Process. 1, 187–190 (1997)Google Scholar
  10. 10.
    Omologo, M., Svaizer, P.: Acoustic event localization using a crosspower-spectrum phase based technique. IEEE Int. Conf. Acoustics Speech Signal Process. 2, 273–276 (1994)Google Scholar
  11. 11.
    Chen, J., Huang, Y., Benesty, J.: Time delay estimation, In: Audio signal processing for next-generation multimedia communication systems. Springer, 197–227 (2004)Google Scholar
  12. 12.
    Gedalyahu, K., Eldar, Y.C.: Time-delay estimation from low-rate samples: a union of subspaces approach. IEEE Trans. Signal Process. 58(6), 3017–3031 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Qasaymeh, M.M., Gami, H., Tayem, N., Sawan, M.E., Pendse, R.: Joint time delay and frequency estimation without eigen-decomposition. IEEE Signal Process. Lett. 16(5), 422–425 (2009)CrossRefGoogle Scholar
  14. 14.
    Liang, Y.C., Leyman, A.R.: Time delay estimation using higher order statistics. Electron. Lett. 33(9), 751–753 (1997)CrossRefGoogle Scholar
  15. 15.
    Hinich, M.J., Wilson, G.R.: Time delay estimation using the cross bispectrum. IEEE Trans. Signal Process. 40(1), 106–113 (1992)CrossRefGoogle Scholar
  16. 16.
    Sharma, K.K., Joshi, S.D.: Time delay estimation using fractional fourier transform. Signal Process. 87(5), 853–865 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Zhou, T., Li, H., Zhu, J., Xu, C.: Subsample time delay estimation of chirp signals using frft. Signal Process. 96, 110–117 (2014)CrossRefGoogle Scholar
  18. 18.
    Lui, K.W., Chan, F.K., So, H.C.: Accurate time delay estimation based passive localization. Signal Process. 89(9), 1835–1838 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976)CrossRefGoogle Scholar
  20. 20.
    Dhull, S., Arya, S., Sahu, O.: Comparison of time-delay estimation techniques in acoustic environment. Int. J. Comput. Appl. 8(9), 29–31 (2010)Google Scholar
  21. 21.
    Stephenne, A., Champagne, B.: Cepstral prefiltering for time delay estimation in reverberant environments. Acoustics, Speech, and Signal Processing, ICASSP, 3055–3058 (1995)Google Scholar
  22. 22.
    Lyon, D.: The discrete fourier transform, part 6: Cross-correlation. J. Object Technol. 9(2), 17–22 (2010)CrossRefGoogle Scholar
  23. 23.
    Carter, G.C., Nuttall, A.H., Cable, P.G.: The smoothed coherence transform. Proc. IEEE 61(10), 1497–1498 (1973)CrossRefGoogle Scholar
  24. 24.
    Roth, P.R.: Effective measurements using digital signal analysis. IEEE Spectr. 4(8), 62–70 (1971)CrossRefGoogle Scholar
  25. 25.
    Hannan, E., Thomson, P.: Estimating group delay. Biometrika 60(2), 241–253 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bedard, S., Champagne, B., Stephenne, A.: Effects of room reverberation on time-delay estimation performance. IEEE Int. Conf. Acoustics Speech Signal Process. 2, 261 (1994)Google Scholar
  27. 27.
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C. C., Liu, H. H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 903–995 (1998)Google Scholar
  28. 28.
    Lei, Y., Lin, J., He, Z., Zuo, M.J.: A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35(1), 108–126 (2013)CrossRefGoogle Scholar
  29. 29.
    Kopsinis, Y., McLaughlin, S.: Development of emd-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Boudraa, A.O., Cexus, J.C.: Denoising via empirical mode decomposition. Proc. IEEE ISCCSP. 4, (2006)Google Scholar
  31. 31.
    Weng, B., Blanco-Velasco, M., Barner, K.E.: Ecg denoising based on the empirical mode decomposition. Engineering in Medicine and Biology Society. (EMBS06), 1–4 (2006)Google Scholar
  32. 32.
    Rai, V.K., Mohanty, A.R.: Bearing fault diagnosis using fft of intrinsic mode functions in hilberthuang transform. Mech. Syst. Signal Process. 21(6), 2607–2615 (2007)CrossRefGoogle Scholar
  33. 33.
    Tsypkin, M.: Induction motor condition monitoring: Vibration analysis technique a twice line frequency component as a diagnostic tool. In: IEEE-International Electric Machines Drives Conference (IEMDC), 117–124 (2013)Google Scholar
  34. 34.
    Mohanty, A.R., Kar, C.: Fault detection in a multistage gearbox by demodulation of motor current waveform. IEEE Trans. Industr. Electron. 53(4), 1285–1297 (2006)CrossRefGoogle Scholar
  35. 35.
    Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)CrossRefGoogle Scholar

Copyright information

© Australian Acoustical Society 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations