Acoustic Field of Phased-Array Ultrasound Transducer with the Focus/Foci Shifting

Abstract

Background

High-intensity focused ultrasound (HIFU) is becoming popular in the treatment of solid tumors because of its non-invasiveness with few complications. The acoustic field is of importance in evaluating the safe focus shifting distance and determining the treatment plan.

Methods

The propagation of finite-amplitude acoustic wave from a 331-element HIFU phased-array with focus steering along and transverse to the transducer axis and 4-foci shifting on the focal plane was simulated using the angular spectrum approach (ASA) with a marching second-order operator-splitting scheme. In addition, the acoustic field produced by a truncated asymmetric transesophageal HIFU annular array was also simulated, and the effects of driving frequency and the number of concentric rings were investigated.

Results

Because of the nonlinear effects, the peak negative pressure is lower than that of peak positive pressure at the main lobe but has a larger beam size. However, the peak positive and negative pressures at the grating lobe are quite similar. The effects of the focus shifting distances on the main and grating lobe (both acoustic pressure and − 6 dB beam size) were evaluated. With the focus shifting axially away from the transducer surface, the main lobe has decreased acoustic pressure by ~ 1.9 fold and increased beam size by ~ 4.5 fold while the grating lobe has the increased acoustic pressure by ~ 1.8 fold. The focus shifting laterally leads to the reduced pressure at the main lobe by ~ 1.4 fold but the slight decrease at the grating lobe by ~ 1.1 fold. In comparison, the shifting of multi-foci has similar influences on the main lobe but increases the pressure at the grating lobe. Driving frequency of annular array is found to have greater influences on the peak pressure and beam size.

Conclusion

Our algorithm can simulate the acoustic field of phased-array in arbitrary shape and optimize the transducer design, and the focus shifting distance and strategy should be selected appropriately for the safe HIFU exposure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zhou, Y. (2015). Principles and applications of therapeutic ultrasound in healthcare. CRC Press. ISBN 1466510285.

  2. 2.

    Colen, R. R., & Jolesz, F. A. (2010). Future potential of MRI-guided focused ultrasound brain surgery. Neuroimaging Clinics, 20(3), 355–366. https://doi.org/10.1016/j.nic.2010.05.003.

    Article  Google Scholar 

  3. 3.

    Ebbini, E. S., & Cain, C. A. (1989). Multiple-focus ultrasound phased-array pattern synthesis: Optimal driving-signal distributions for hyperthermia. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 36(5), 540–548. https://doi.org/10.1109/58.31798.

    Article  Google Scholar 

  4. 4.

    Auboiroux, V., Dumont, E., Petrusca, L., Viallon, M., & Salomir, R. (2011). An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy. Physics in Medicine and Biology, 56(12), 3563. https://doi.org/10.1088/0031-9155/56/12/008.

    Article  Google Scholar 

  5. 5.

    Köhler, M. O., Mougenot, C., Quesson, B., Enholm, J., Le Bail, B., Laurent, C., et al. (2009). Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Medical Physics, 36(8), 3521–3535. https://doi.org/10.1118/1.3152112.

    Article  Google Scholar 

  6. 6.

    Wan, H., VanBaren, P., Ebbini, E. S., & Cain, C. A. (1996). Ultrasound surgery: Comparison of strategies using phased array systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(6), 1085–1098. https://doi.org/10.1109/58.542052.

    Article  Google Scholar 

  7. 7.

    Ebbini, E. S., & Cain, C. A. (1991). A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Transactions on Biomedical Engineering, 38(7), 634–643. https://doi.org/10.1109/10.83562.

    Article  Google Scholar 

  8. 8.

    Bailey, M., Khokhlova, V., Sapozhnikov, O., Kargl, S., & Crum, L. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics, 49(4), 369–388. https://doi.org/10.1134/1.1591291.

    Article  Google Scholar 

  9. 9.

    Zhou, Y., Zhai, L., Simmons, R., & Zhong, P. (2006). Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. The Journal of the Acoustical Society of America, 120(2), 676–685. https://doi.org/10.1121/1.2214131.

    Article  Google Scholar 

  10. 10.

    Kuznetsov, V. P. (1971). Equations of nonlinear acoustics. Soviet Physics Acoustics, 16(4), 467–470.

    Google Scholar 

  11. 11.

    Zabolotskaya, E. A., & Khokhlov, R. V. (1969). Quasi-plane waves in the nonlinear acoustics of confined beams. Soviet Physics Acoustics, 15(1), 35–40.

    Google Scholar 

  12. 12.

    Hand, J., Shaw, A., Sadhoo, N., Rajagopal, S., Dickinson, R., & Gavrilov, L. (2009). A random phased array device for delivery of high intensity focused ultrasound. Physics in Medicine and Biology, 54(19), 5675. https://doi.org/10.1088/0031-9155/54/19/002.

    Article  Google Scholar 

  13. 13.

    Wang, M., & Zhou, Y. (2016). Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU). International Journal of Hyperthermia, 32(5), 569–582. https://doi.org/10.3109/02656736.2016.1160154.

    Article  Google Scholar 

  14. 14.

    Yuldashev, P., & Khokhlova, V. (2011). Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays. Acoustical Physics, 57(3), 334–343. https://doi.org/10.1134/s1063771011030213.

    Article  Google Scholar 

  15. 15.

    Westervelt, P. J. (1963). Parametric acoustic array. The Journal of the Acoustical Society of America, 35(4), 535–537.

    Article  Google Scholar 

  16. 16.

    Doinikov, A. A., Novell, A., Calmon, P., & Bouakaz, A. (2014). Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the Westervelt equation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(9), 1470–1477. https://doi.org/10.1109/tuffc.2014.3061.

    Article  Google Scholar 

  17. 17.

    Kreider, W., Yuldashev, P. V., Sapozhnikov, O. A., Farr, N., Partanen, A., Bailey, M. R., et al. (2013). Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(8), 1683. https://doi.org/10.1109/tuffc.2013.2750.

    Article  Google Scholar 

  18. 18.

    Lee, Y. S., & Hamilton, M. F. (1995). Time-domain modeling of pulsed finite-amplitude sound beams. The Journal of the Acoustical Society of America, 97(2), 906–917. https://doi.org/10.1016/s0041-624x(99)00112-2.

    Article  Google Scholar 

  19. 19.

    Seip, R., Sanghvi, N. T., Uchida, T., & Umemura, S.-I. (2001). Comparison of split-beam transducer geometries and excitation configurations for transrectal prostate HIFU treatments. In IEEE ultrasonics symposium (pp. 1343–1346). https://doi.org/10.1109/ultsym.2001.991969.

  20. 20.

    Constanciel, E., N’Djin, W. A., Bessiere, F., Chavrier, F., Grinberg, D., Vignot, A., et al. (2013). Design and evaluation of a transesophageal HIFU probe for ultrasound-guided cardiac ablation: simulation of a HIFU mini-maze procedure and preliminary ex vivo trials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(9), 1868–1883. https://doi.org/10.1109/tuffc.2013.2772.

    Article  Google Scholar 

  21. 21.

    Goss, S. A., Frizzell, L. A., Kouzmanoff, J. T., Barich, J. M., & Yang, J. M. (1996). Sparse random ultrasound phased array for focal surgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(6), 1111–1121. https://doi.org/10.1109/58.542054.

    Article  Google Scholar 

  22. 22.

    Chen, D., & McGough, R. J. (2008). A 2D fast near-field method for calculating near-field pressures generated by apodized rectangular pistons. The Journal of the Acoustical Society of America, 124(3), 1526–1537. https://doi.org/10.1121/1.2950081.

    Article  Google Scholar 

  23. 23.

    Vyas, U., & Christensen, D. (2012). Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(6), 1093–1100. https://doi.org/10.1109/tuffc.2012.2300.

    Article  Google Scholar 

  24. 24.

    Zemp, R. J., Tavakkoli, J., & Cobbold, R. S. (2003). Modeling of nonlinear ultrasound propagation in tissue from array transducers. The Journal of the Acoustical Society of America, 113(1), 139–152. https://doi.org/10.1109/ultsym.2002.1192634.

    Article  Google Scholar 

  25. 25.

    Ji, X., Bai, J.-F., Shen, G.-F., & Chen, Y.-Z. (2009). High-intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors. Journal of Zhejiang University SCIENCE B: Biomedicine and Biotechnology, 10(9), 639–647. https://doi.org/10.1631/jzus.b0920130.

    Article  Google Scholar 

  26. 26.

    Daum, D. R., & Hynynen, K. (1999). A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(5), 1254–1268. https://doi.org/10.1109/58.796130.

    Article  Google Scholar 

  27. 27.

    Gavrilov, L. R., & Hand, J. W. (2000). A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(1), 125–139. https://doi.org/10.1109/58.818755.

    Article  Google Scholar 

  28. 28.

    Yang, X., & Cleveland, R. O. (2005). Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. The Journal of the Acoustical Society of America, 117(1), 113–123. https://doi.org/10.1121/1.1828671.

    Article  Google Scholar 

  29. 29.

    Ginter, S., Liebler, M., Steiger, E., Dreyer, T., & Riedlinger, R. E. (2002). Full-wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids. The Journal of the Acoustical Society of America, 111(5), 2049–2059. https://doi.org/10.1121/1.1468876.

    Article  Google Scholar 

  30. 30.

    Jing, Y., Wang, T., & Clement, G. T. (2012). A k-space method for moderately nonlinear wave propagation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(8), 1664–1673. https://doi.org/10.1109/tuffc.2012.2372.

    Article  Google Scholar 

  31. 31.

    Clement, G. T., & Hynynen, K. (2003). Forward planar projection through layered media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(12), 1689–1698. https://doi.org/10.1109/tuffc.2003.1256310.

    Article  Google Scholar 

  32. 32.

    Christopher, P. T., & Parker, K. J. (1991). New approaches to nonlinear diffractive field propagation. The Journal of the Acoustical Society of America, 90(1), 488–499. https://doi.org/10.1121/1.401274.

    Article  Google Scholar 

  33. 33.

    Wu, P., Kazys, R., & Stepinski, T. (1997). Optimal selection of parameters for the angular spectrum approach to numerically evaluate acoustic fields. The Journal of the Acoustical Society of America, 101(1), 125–134. https://doi.org/10.1121/1.418013.

    Article  Google Scholar 

  34. 34.

    Turnbull, D. H., & Foster, F. S. (1991). Beam steering with pulsed two-dimensional transducer arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 38(4), 320–333. https://doi.org/10.1109/58.84270.

    Article  Google Scholar 

  35. 35.

    Dolph, C. L. (1946). A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proceedings of the IRE, 34(6), 335–348. https://doi.org/10.1109/jrproc.1946.225956.

    Article  Google Scholar 

  36. 36.

    Payne, A., Vyas, U., Todd, N., De Bever, J., Christensen, D. A., & Parker, D. L. (2011). The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating. Medical Physics, 23(5), 767–776. https://doi.org/10.1118/1.3618729.

    Article  Google Scholar 

  37. 37.

    Hutchinson, E., Buchanan, M., & Hynynen, K. (1996). Design and optimization of an aperiodic ultrasound phased array for intracavitary prostate thermal therapies. Medical Physics, 23(5), 767–776. https://doi.org/10.1118/1.597741.

    Article  Google Scholar 

  38. 38.

    Dupenloup, F., Chapelon, J. Y., Cathignol, D. J., & Sapozhnikov, O. (1996). Reduction of the grating lobes of annular arrays used in focused ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(6), 991–998. https://doi.org/10.1109/58.542044.

    Article  Google Scholar 

  39. 39.

    Wang, M., & Zhou, Y. (2018). High-intensity focused ultrasound (HIFU) ablation by the frequency chirp excitation: Reduction of the grating lobe in axial focus shifting. Journal of Physics D: Applied Physics, 51(28), 285402. https://doi.org/10.1088/1361-6463/aacaed.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lean, H.Q., Zhou, Y. Acoustic Field of Phased-Array Ultrasound Transducer with the Focus/Foci Shifting. J. Med. Biol. Eng. 39, 919–931 (2019). https://doi.org/10.1007/s40846-019-00464-z

Download citation

Keywords

  • High-intensity focused ultrasound (HIFU)
  • Phased-array
  • Nonlinear wave propagation
  • Angular spectrum algorithm (ASA)
  • Focus shifting