Skip to main content
Log in

The Effects of Implant Orientations and Implant–Bone Interfacial Conditions on Potential Causes of Failure of Tibial Component Due to Total Ankle Replacement

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Aseptic loosening of implant components is a major issue of failure for total ankle replacement (TAR). One of the causes of implant loosening is a result of excessive bone density loss. This study is aimed at determining the effects of implant orientations and implant–bone interface conditions on the potential causes of failure of the tibial component. Three-dimensional finite element (FE) models of intact and implanted ankles were developed using computed tomography data sets. To understand the effect of implant orientations, four other FE models of the implanted ankle were developed separately, which consist of a variation of varus and valgus angles of 5° and 10°, respectively. Dorsiflexion and neutral and plantar flexion positions were considered as applied loading conditions. Orientations of the implant caused a decrease in strain energy density (SED) of the tibia bone away from the implant vicinity, where around 10–50 and 10–60% reduction in SED was found owing to the orientation of the 5° and 10° varus and valgus angles. Decreases in SED were found to be greater in the case of debonded implant–bone interface conditions compared to bonded interface conditions. This study indicates that proper bonding between implant and bone and implant orientation are important for long-term survival of the tibial component owing to TAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Joint Registry. (2016). National Joint Registry for England and Wales, 13th Annual Report.

  2. Australia National Replacement Registry. (2016). Demographics and outcomes of Ankle Arthroplasty.

  3. Henricson, A., Nilsson, J. A., & Carlsson, A. (2011). 10-Year survival of total ankle arthroplasties: A report on 780 cases from the Swedish Ankle Register. Acta Orthopaedica, 82, 655–659.

    Article  Google Scholar 

  4. Ghosh, R., & Gupta, S. (2014). Bone remodelling around cementless composite acetabular components: The effects of implant geometry and implant–bone interfacial conditions. Journal of Mechanical Behavior of Biomedical Materials, 32, 257–269.

    Article  Google Scholar 

  5. Engh, C. A., O’Connor, D., & Jasty, M. (1992). Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clinical Orthopaedics and Related Research, 285, 13–29.

    Google Scholar 

  6. Conti, S. F., & Wong, Y. S. (2001). Complications of total ankle replacement. Clinical Orthopaedics and Related Research, 391, 105–114.

    Article  Google Scholar 

  7. Sadoghi, P., Roush, G., & Kastner, N. (2014). Failure modes for total ankle arthroplasty: A statistical analysis of the Norwegian Arthroplasty Register. Archives of Orthopaedic and Trauma Surgery, 134, 1361–1368.

    Article  Google Scholar 

  8. Ghosh, R., Mukharjee, K., & Gupta, S. (2013). Bone remodelling around uncemented metallic and ceramic acetabular components. Proceeding of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(5), 490–502.

    Article  Google Scholar 

  9. Jung, J. M., & Kim, C. S. (2014). Analysis of stress distribution around total hip stems custom-designed for the standarized Asian femur configuration. Biotechnology and Biotechnological Equipment, 28(3), 525–532.

    Article  Google Scholar 

  10. Georgeanu, V., Atasiel, T., & Gruionu, L. (2014). Periprosthetic bone remodelling in Total Knee Arthroplasty. Maedica: A Journal of Clinical Medicine, 9(1), 56–61.

    Google Scholar 

  11. Mellal, A., Wiskott, H. W. A., Botsis, J., Scherrer, S. S., & Belser, U. C. (2004). Stimulating effect of implant loading on surrounding bone. Clinical Oral Implants Research, 15, 239–248.

    Article  Google Scholar 

  12. Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudala, B., & Slooff, T. J. (1987). Adaptive bone-remodelling theory applied to prosthetic-design analysis. Journal of Biomechanics, 20, 1135–1150.

    Article  Google Scholar 

  13. Jang, I. G., Kim, I. Y., & Kwak, B. B. (2008). Analogy of strain energy density-based bone-remodelling algorithm and structural topology optimization. Journal of Biomechanical Engineering, 131(1), 011012–0110118.

    Article  Google Scholar 

  14. Vickerstaff, A. J., Miles, W. A., & Cunningham, L. J. (2007). A brief history of total ankle replacement and review of the current status. Medical Engineering & Physics, 29, 1056–1064.

    Article  Google Scholar 

  15. Wei, F., Hunley, C. S., & Powell, W. J. (2011). Development and validation of a computational model to study the effect of foot constraint on ankle injury due to the external rotation. Annals of Biomedical Engineering, 39, 756–765.

    Article  Google Scholar 

  16. Valderrabano, V., Hintermann, B., & Nigg, M. B. (2003). Kinematics changes after fusion and total replacement of the ankle. Part 1-Range of motion (ROM). Foot and Ankle International, 24, 881–887.

    Article  Google Scholar 

  17. Miller, C. M., Smolinski, P., & Conti, S. (2004). Stresses in polyethylene lines in a semi constrained ankle prosthesis. Journal of Biomechanical Engineering, 126, 636–640.

    Article  Google Scholar 

  18. Reggiani, B., Leardini, A., & Corazza, F. (2006). Finite element analysis of total ankle replacement during the stance phase of gait. Journal of Biomechanics, 39, 1435–1443.

    Article  Google Scholar 

  19. Richter, M., Zech, S., & Westfhal, R. (2007). Robotic cadaver testing of a new total ankle prosthesis model. Foot and Ankle International, 28, 1276–1286.

    Article  Google Scholar 

  20. Espinosa, N., Walti, M., & Favre, P. (2010). Misalignment of total ankle components can induce high joint contact pressures. Journal of Bone & Joint Surgery, 92, 1179–1187.

    Article  Google Scholar 

  21. Ozen, M., Sayman, O., & Havitcioglu, H. (2013). Modelling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex. Acta of Bioengineering & Biomechanics, 15(3), 19–27.

    Google Scholar 

  22. Rodrigues, D.S.O.S. (MS. Thesis 2013). Biomechanics of the total ankle arthroplasty: Stress analysis and bone remodelling. Tecnico Lisboa, Portugal. https://fenix.tecnico.ulisboa.pt/downloadFile/395145522891/Tese.pdf.

  23. Elliot, J. B., Gundapaneni, D., & Goswami, T. (2014). Finite element analysis of stress and wear characterization in total ankle replacements. Journal of Mechanical Behavior of Biomedical Materials, 34, 134–145.

    Article  Google Scholar 

  24. Bouguecha, A., Weigel, N., & Behrens, B. A. (2011). Numerical simulation of strain-adaptive bone remodelling in the ankle joint. Biomedical Engineering Online, 10(58), 2–13.

    Google Scholar 

  25. Terrier, A., Larrea, X., & Guerdat, J. (2014). Development and experimental validation of a finite element model of total ankle replacement. Journal of Biomechanics, 47, 742–745.

    Article  Google Scholar 

  26. Terrier, A., Fernandes, C. S., & Guillemin, M. (2017). Fixed and mobile bearing total ankle prostheses: Effect on tibial bone strain. Clinical Biomechanics, 48, 57–62.

    Article  Google Scholar 

  27. Sopher, S. R., Andrew, A. A., & James, D. C. (2017). Total ankle replacement design and positioning affect implant–bone micromotion and bone strains. Medical Engineering & Physics, 42, 80–90.

    Article  Google Scholar 

  28. Mondal, S., & Ghosh, R. (2017). A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments. Journal of Orthopaedics, 14, 329–335.

    Article  Google Scholar 

  29. Ali, M. A., Newman, S. D. S., Hopper, P. A., Davies, C. M., & Copp, J. B. (2017). The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty. Bone & Joint Research, 6(8), 522–529.

    Article  Google Scholar 

  30. Robert, L., & Barrack, M. D. (2003). Dislocation after total hip arthroplasty: Implant design and orientation. Journal of American Academy Orthopaedic Surgeons, 11, 89–99.

    Article  Google Scholar 

  31. Varghese, B., Short, D., & Penmetsa, R. (2011). Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. Journal of Biomechanics, 44, 1374–1379.

    Article  Google Scholar 

  32. Ghosh, R., Pal, B., & Ghosh, D. (2015). Finite element analysis of a hemi-pelvis: The effect of inclusion of cartilage layer on acetabular stresses and strain. Computer Methods in Biomechanics & Biomedical Engineering, 18, 697–710.

    Article  Google Scholar 

  33. STAR Surgical Technique—Small Bone Innovations, Inc. Cited 2013 4th March. http://www.star-ankle.com/.

  34. Saltzman, C. L., Tochigi, Y., & Rudert, M. J. (2004). The effect of agility ankle prosthesis misalignment on the peri-ankle ligaments. Clinical Orthopaedics and Related Research, 424, 137–142.

    Article  Google Scholar 

  35. Ramlee, M. H., Kadir, M. R. A., & Harun, H. (2013). Three-dimensional modelling and analysis of a human ankle joint. IEEE Conference on Research and Development. Putrajaya, Malaysia.

  36. Linde, F., Hvid, I., & Madsen, F. (1992). The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. Journal of Biomechanics, 25, 359–368.

    Article  Google Scholar 

  37. Beumar, A., Hemert, W. L. V., & Swierstra, B. A. (2003). A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Foot and Ankle International, 24, 426–429.

    Article  Google Scholar 

  38. Liacouras, P. C., & Wayne, J. S. (2007). Computational modelling to predict mechanical function of joints: Application to the lower leg simulation of two cadaver studies. Journal of Biomechanical Engineering, 129, 811–817.

    Article  Google Scholar 

  39. Corazza, F., O’Connor, J. J., & Leardini, A. (2003). Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint. Journal of Biomechanics, 36(3), 363–372.

    Article  Google Scholar 

  40. Bekerom, V. D. M. P., & Raven, E. E. (2007). The distal fascicle of the anterior inferior tibiofibular ligament as a cause of tibiotalar impingement syndrome: A current concepts review. Knee Surgery, Sports Traumatology, Arthroscopy, 15(4), 465–471.

    Article  Google Scholar 

  41. Seireg, A., & Arvikar, R. J. (1975). The prediction of muscular load shearing and joint forces in the lower extremities during walking. Journal of Biomechanics, 8, 89–102.

    Article  Google Scholar 

  42. Netter, F. H., & Hansen, J. T. (2003). Atlas of human anatomy (3rd ed.). Teterboro, NJ: Icon Learning Systems.

    Google Scholar 

  43. Carter, D., Orr, T. E., & Fyhrie, D. (1989). Relationships between bone loading history and femoral cancellous bone architecture. Journal of Biomechanics, 22(3), 231–244.

    Article  Google Scholar 

  44. van Rietbergen, B., Huiskes, R., Weinnans, H., Sumner, D. R., Turner, T. M., & Galante, J. O. (1993). The mechanism of bone remodelling and resorption around press-fitted THA stems. Journal of Biomechanics, 26(4–5), 369–382.

    Article  Google Scholar 

  45. Hoffman, O. (1967). The brittle strength of orthotropic material. Journal of Composite Materials, 1, 200–206.

    Article  Google Scholar 

  46. Stone, J. L., Beaupre, G. S., & Hayes, W. C. (1983). Multiaxial strength characteristics of trabecular bone. Journal of Biomechanics, 16(9), 743–752.

    Article  Google Scholar 

  47. Kaplan, S. J., Hayes, W. C., & Stone, J. L. (1985). Tensile strength of bovine trabecular bone. Journal of Biomechanics, 18(9), 723–727.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Indian Institute of Technology Mandi for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Ghosh.

Ethics declarations

Conflict of interest

The authors hereby state that regarding submission of this research paper, there are no financial and personal relationships with other people and organisations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Ghosh, R. The Effects of Implant Orientations and Implant–Bone Interfacial Conditions on Potential Causes of Failure of Tibial Component Due to Total Ankle Replacement. J. Med. Biol. Eng. 39, 541–551 (2019). https://doi.org/10.1007/s40846-018-0435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0435-5

Keywords

Navigation