Advertisement

Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery

  • Yi-Hung Liu
  • Li-Fong Lin
  • Chun-Wei Chou
  • Yun Chang
  • Yu-Tsung Hsiao
  • Wei-Chun Hsu
Original Article

Abstract

Bilateral upper-limb motor imagery has been demonstrated to be a useful mental task in electroencephalography (EEG)-based brain–computer interfaces (BCIs). By contrast, few studies have examined bilateral lower-limb motor imagery, and all of them have focused on imaginary foot movements. The left–right classification accuracy reported in these studies based on the EEG mu rhythm (8–13 Hz) and beta band (13–30 Hz) remains unsatisfactory. The present study investigated the possibility of using lower-limb stepping motor imagery as the mental task and analysed the EEG difference between imaginary left-leg stepping (L-stepping) and right-leg stepping (R-stepping) movements. An experimental paradigm was designed to collect 5-s motor imagery EEG signals at nine recording sites around the vertex of the brain. Results from eight able-bodied participants indicated that the commonly used mu event-related desynchronisation (ERD) feature exhibited no significant difference between the two imaginary movements for all recording sites and all time intervals within the 5-s motor imagery period. Regarding the other commonly used feature, beta event-related synchronisation, no significant difference between the two imagery tasks was observed for most of the recording sites and time intervals. Instead, theta band (4–8 Hz) ERD significantly differed between the L- and R-stepping imagery tasks at five sites (FC4, C3, CP3, Cz, CPz) within the first 2 s after motor imagery cue onset. The findings from the present study may be a basis for further development of BCI systems for decoding left and right stepping during mental exercise where the two motions are alternately imagined.

Keywords

Electroencephalography Stepping Motor imagery Brain–computer interface 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant No. 103-2923-E-027-001-MY3. The Authors would like to thank Dr. Chien-Te Wu, National Taiwan University, and Mr. Shiuan Huang, National Taipei University of Technology, Taipei, Taiwan, for useful discussion.

References

  1. 1.
    Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.CrossRefGoogle Scholar
  2. 2.
    Hyder, F., Kida, I., Behar, K. L., Kennan, R. P., Maciejewski, P. K., & Rothman, D. L. (2001). Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR in Biomedicine, 14, 413–431.CrossRefGoogle Scholar
  3. 3.
    Weyand, S., Takehara-Nishiuchi, K., & Chau, T. (2015). Weaning off mental tasks to achieve voluntary self-regulatory control of a near-infrared spectroscopy brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(4), 548–561.CrossRefGoogle Scholar
  4. 4.
    Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41, 1257–1260.CrossRefGoogle Scholar
  5. 5.
    Pfurtscheller, G., Brunner, C., Schlogl, A., & Lopes da Silva, F. H. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage, 31, 153–159.CrossRefGoogle Scholar
  6. 6.
    Gao, J., Tian, H., Yang, Y., Yu, X., Li, C., & Rao, N. (2014). A novel algorithm to enhance P300 in single trials: Application to lie detection using F-score and SVM. PLoS ONE, 9(11), e109700.CrossRefGoogle Scholar
  7. 7.
    Liu, Y. H., Wang, S. H., & Hu, M. R. (2016). A self-paced P300 healthcare brain-computer interface system with SSVEP-based switching control and kernel FDA + SVM-based detector. Applied Sciences, 6(5), 142.CrossRefGoogle Scholar
  8. 8.
    Liu, Y. H., Wu, C. T., Cheng, W. T., Hsiao, Y. T., Chen, P. M., & Teng, J. T. (2014). Emotion recognition from single-trial EEG based on kernel Fisher’s emotion pattern and imbalanced quasiconformal kernel support vector machine. Sensors, 14, 13361–13388.CrossRefGoogle Scholar
  9. 9.
    Qian, K., Nikolov, P., Huang, D., Fei, D. Y., Chen, X., & Bai, O. (2010). A motor imagery-based online interactive brain-controlled switch: Paradigm development and preliminary test. Clinical Neurophysiology, 121, 304–313.CrossRefGoogle Scholar
  10. 10.
    Chae, Y., Jeong, J., & Jo, S. (2012). Toward brain-actuated humanoid robots: Asynchronous direct control using an EEG-Based BCI. IEEE Transactions on Robotics, 28, 1131–1144.CrossRefGoogle Scholar
  11. 11.
    Leeb, R., Lancelle, M., Kaiser, V., Fellner, D. W., & Pfurtscheller, G. (2013). Thinking penguin: Multi-modal brain-computer interface control of a VR game. IEEE Computational Intelligence and AI in Games, 5, 117–128.CrossRefGoogle Scholar
  12. 12.
    Yang, B., Li, H., Wang, Q., & Zhang, Y. (2016). Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces. Computer Methods and Programs in Biomedicine, 129, 21–28.CrossRefGoogle Scholar
  13. 13.
    Ghani, F., Sultan, H., Anwar, D., Farooq, O., & Khan, Y. U. (2013). Classification of wrist movements using EEG signals. Journal of Next Generation Information Technology, 4, 29–39.CrossRefGoogle Scholar
  14. 14.
    Liao, K., Xiao, R., Gonzalez, J., & Ding, L. (2014). Decoding individual finger movements from one hand using human EEG signals. PLoS ONE, 9(1), e85192.CrossRefGoogle Scholar
  15. 15.
    Yong, X., & Menon, C. (2015). EEG classification of different imaginary movements within the same limb. PLoS ONE, 10(4), e0121896.CrossRefGoogle Scholar
  16. 16.
    Neuper, C., & Pfurtscheller, G. (1996). Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neuroscience Letters, 216, 17–20.CrossRefGoogle Scholar
  17. 17.
    Hashimoto, Y., & Ushiba, J. (2013). EEG-based classification of imaginary left and right foot movements using beta rebound. Clinical Neurophysiology, 124, 2153–2160.CrossRefGoogle Scholar
  18. 18.
    Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C., Prieto, G. A., Moreno, J. C., et al. (2014). A closed-loop brain–computer interface triggering an active ankle–foot orthosis for inducing cortical neural plasticity. IEEE Transactions on Biomedical Engineering, 61, 2092–2101.CrossRefGoogle Scholar
  19. 19.
    Stippich, C., Ochmann, H., & Sartor, K. (2002). Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neuroscience Letters, 331, 50–54.CrossRefGoogle Scholar
  20. 20.
    Muller-Putz, G. R., Kaiser, V., Solis-Escalante, T., & Pfurtscheller, G. (2010). Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Medical & Biological Engineering & Computing, 48, 229–233.CrossRefGoogle Scholar
  21. 21.
    Pfurtscheller, G., & Solis-Escalante, T. (2009). Could the beta rebound in the EEG be suitable to realize a brain switch? Clinical Neurophysiology, 120, 24–29.CrossRefGoogle Scholar
  22. 22.
    Hsu, W. C., Lin, L. F., Chou, C. W., Hsiao, Y. T., & Liu, Y. H. (2017). EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. International Journal of Fuzzy Systems, 19, 566–579.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Roosink, M., & Zijdewind, I. (2010). Corticospinal excitability during observation and imagery of simple and complex hand tasks: Implications for motor rehabilitation. Behavioural Brain Research, 213, 35–41.CrossRefGoogle Scholar
  24. 24.
    Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. European Journal of Neuroscience, 18, 3375–3387.CrossRefGoogle Scholar
  25. 25.
    Sadato, N., Campbell, G., Ibanez, V., Deiber, M. P., & Hallett, M. (1996). Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience, 16, 2693–2700.Google Scholar
  26. 26.
    Calmels, Claire, Hars, Magaly, Holmes, Paul, Jarry, Gilbert, & Stam, Cornelis J. (2008). Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements. Experimental Brain Research, 190, 389–400.CrossRefGoogle Scholar
  27. 27.
    Manganotti, P., Gerloff, C., Toro, C., Katsuta, H., Sadato, N., Zhuang, P. A., et al. (1998). Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 109(1), 50–62.CrossRefGoogle Scholar
  28. 28.
    Hummel, Friedhelm, Kirsammer, Rolf, & Gerlof, Christian. (2003). Ipsilateral cortical activation during finger sequences of increasing complexity: Representation of movement difficulty or memory load? Clinical Neurophysiology, 114, 605–613.CrossRefGoogle Scholar
  29. 29.
    Yi, W., Qiu, S., Qi, H., Zhang, L., Wan, B., & Ming, D. (2013). EEG feature comparison and classification of simple and compound limb motor imagery. Journal of Neuroengineering and Rehabilitation, 10(1), 106.CrossRefGoogle Scholar
  30. 30.
    Muthuraman, M., Tamás, G., Hellriegel, H., Deuschl, G., & Raethjen, J. (2012). Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography. PLoS ONE, 7(3), e33928.CrossRefGoogle Scholar
  31. 31.
    Saladin, K. (2007). Anatomy and physiology: The unity of form and function. Ohio: McGraw-Hill.Google Scholar
  32. 32.
    Dickstein, R., & Deutsch, J. E. (2007). Motor imagery in physical therapist practice. Physical Therapy, 87(7), 942–953.CrossRefGoogle Scholar
  33. 33.
    Dickstein, R., Dunsky, A., & Marcovitz, E. (2004). Motor imagery for gait rehabilitation in post-stroke hemiparesis. Physical Therapy, 84(12), 1167–1177.Google Scholar
  34. 34.
    Dunsky, A., Dickstein, R., Ariav, C., Deutsch, J., & Marcovitz, E. (2006). Motor imagery practice in gait rehabilitation of chronic post-stroke hemiparesis: Four case studies. International Journal of Rehabilitation Research, 29(4), 351–356.CrossRefGoogle Scholar
  35. 35.
    Malouin, F., & Richards, C. L. (2010). Mental practice for relearning locomotor skills. Physical Therapy, 90(2), 240–251.CrossRefGoogle Scholar
  36. 36.
    Vourvopoulos, A., & Badia, S. B. (2016). Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: A within-subject analysis. Journal of Neuroengineering and Rehabilitation, 13(1), 69.CrossRefGoogle Scholar
  37. 37.
    Schacter, D. L. (1977). EEG theta waves and psychological phenomena: A review and analysis. Biological Psychology, 5(1), 47–82.CrossRefGoogle Scholar
  38. 38.
    Erfani, A. & Erfanian, A. (2004, September). The effects of mental practice and concentration skills on EEG brain dynamics during motor imagery using independent component analysis. In Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE (Vol. 1, pp. 242–239).Google Scholar
  39. 39.
    Weber, E., & Doppelmayr, M. (2016). Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw. International Journal of Psychophysiology, 110, 137–145.CrossRefGoogle Scholar
  40. 40.
    Bui, D. C., Maddox, G. B., & Balota, D. A. (2013). The roles of working memory and intervening task difficulty in determining the benefits of repetition. Psychonomic Bulletin & Review, 20(2), 341–347.CrossRefGoogle Scholar
  41. 41.
    Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134.CrossRefGoogle Scholar
  42. 42.
    C. Neuper & G. Pfurtscheller. (1999). Motor imagery and ERD in event-related desynchronization In G. Pfurtscheller & F. H. L. da Silva (Eds.), Handbook of electroencephraphy and clinical. neurophysiology, rev. ed, (Vol. 6, pp. 303–325). Amsterdam, The Netherlands: Elsevier.Google Scholar
  43. 43.
    Ginter, J., Jr., Blinowska, K. J., Kamin, M., Durka, P. J., Pfurtscheller, G., & Neuper, C. (2005). Propagation of EEG activity in the beta and gamma band during movement imagery in humans. Methods Archive, 44(1), 106–113.Google Scholar
  44. 44.
    Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2), 65–68.CrossRefGoogle Scholar
  45. 45.
    Grosse-Wentrup, M. (2009). Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In Advances in neural information processing systems (pp. 561–568).Google Scholar
  46. 46.
    Hamedi, Mahyar, Salleh, Sh-Hussain, & Noor, Alias Mohd. (2016). Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Computation, 28, 999–1041.CrossRefGoogle Scholar
  47. 47.
    Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.CrossRefGoogle Scholar
  48. 48.
    Li, M., & Lu, B. L. (2009). Emotion classification based on gamma-band EEG. In Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE (pp. 1223–1226).Google Scholar
  49. 49.
    Wang, X. W., Nie, D., & Lu, B. L. (2011). EEG-based emotion recognition using frequency domain features and support vector machines. In International conference on neural information processing (pp. 734–743).Google Scholar
  50. 50.
    Tomida, N., Tanaka, T., Ono, S., Yamagishi, M., & Higashi, H. (2015). EEG datasets for motor imagery brain–computer interface. IEEE Transactions on Biomedical Engineering, 62, 458–467.CrossRefGoogle Scholar
  51. 51.
    Liu, Y. H., Huang, C. W., & Hsiao, Y. T. (2013). Controlling the false positive rate of a two-state self-paced brain-computer interface. In Systems, man, and cybernetics (SMC), 2013 IEEE international conference (pp. 1476–1481).Google Scholar
  52. 52.
    Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.CrossRefGoogle Scholar
  53. 53.
    Braun, S. M., Beurskens, A. J., Borm, P. J., Schack, T., & Wade, D. T. (2006). The effects of mental practice in stroke rehabilitation: A systematic review. Archives of Physical Medicine and Rehabilitation, 87(6), 842–852.CrossRefGoogle Scholar
  54. 54.
    Page, S. J., Levine, P., & Leonard, A. (2007). Mental practice in chronic stroke. Stroke, 38(4), 1293–1297.CrossRefGoogle Scholar
  55. 55.
    Ietswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWalter, R. S., et al. (2011). Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain, 134(5), 1373–1386.CrossRefGoogle Scholar
  56. 56.
    Flansbjer, U. B., Holmbäck, A. M., Downham, D., Patten, C., & Lexell, J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. Journal of Rehabilitation Medicine, 37(2), 75–82.CrossRefGoogle Scholar
  57. 57.
    Perry, Jacquelin, & Davids, Jon R. (1992). Gait analysis: Normal and pathological function. Journal of Pediatric Orthopaedics, 12, 815.CrossRefGoogle Scholar
  58. 58.
    Malfait, B., Staes, F., de Vries, A., Smeets, A., Hawken, M., Robinson, M. A., et al. (2015). Dynamic neuromuscular control of the lower limbs in response to unexpected single-planar versus multi-planar support perturbations in young, Active Adults. PLoS ONE, 10(7), e0133147.CrossRefGoogle Scholar
  59. 59.
    Hall, C. R., & Martin, K. A. (1997). Measuring movement imagery abilities: A revision of the movement imagery questionnaire. Journal of Mental Imagery, 21(1–2), 143–154.Google Scholar
  60. 60.
    Presacco, A., Forrester, L., & Contreras-Vidal, J. L. (2011). Towards a non-invasive brain-machine interface system to restore gait function in humans. In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE (pp. 4588–4591).Google Scholar
  61. 61.
    Belda-Lois, J. M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J. C., Pons, J. L., Farina, D., et al. (2011). Rehabilitation of gait after stroke: A review towards a top-down approach. Journal of Neuroengineering and Rehabilitation, 8(1), 66.CrossRefGoogle Scholar
  62. 62.
    Wada, F., Nakanishi, Y., & Hachisuka, K. (2012). Effects of gait-related imagery and mirror visual feedback on cortical activation during robot-assisted gait training. In Complex medical engineering (CME), 2012 ICME international conference (pp. 629–633).Google Scholar
  63. 63.
    Velu, P., & de Sa, V. R. (2013). Single-trial classification of gait and point movement preparation from human EEG. Frontiers in Neuroscience, 7, 84.CrossRefGoogle Scholar
  64. 64.
    English, R., Brannock, M., Chik, W. T., Eastwood, L. S., & Uhl, T. (2006). The relationship between lower extremity isokinetic work and single-leg functional hop-work test. Journal of Sport Rehabilitation, 15(2), 95–104.CrossRefGoogle Scholar
  65. 65.
    Velotta, J., Weyer, J., Ramirez, A., Winstead, J., & Bahamonde, R. (2011). Relationship between leg dominance tests and type of task. Portuguese Journal of Sports Science, 11(1035–1038), 25.Google Scholar
  66. 66.
    Zulfikri, N., & Justine, M. (2017). Effects of kinesio® taping on dynamic balance following fatigue: A randomized controlled trial. Physical Therapy Research, 20(1), 16–22.CrossRefGoogle Scholar
  67. 67.
    Beisteiner, R., Höllinger, P., Lindinger, G., Lang, W., & Berthoz, A. (1995). Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(2), 183–193.CrossRefGoogle Scholar
  68. 68.
    Lang, W., Cheyne, D., Höllinger, P., Gerschlager, W., & Lindinger, G. (1996). Electric and magnetic fields of the brain accompanying internal simulation of movement. Cognitive Brain Research, 3(2), 125–129.CrossRefGoogle Scholar
  69. 69.
    Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26, 121–135.CrossRefGoogle Scholar
  70. 70.
    Yuan, H., Liu, T., Szarkowski, R., Rios, C., Ashe, J., & He, B. (2010). Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. Neuroimage, 49, 1–21.CrossRefGoogle Scholar
  71. 71.
    Pfurtscheller, G., Neuper, C., Brunner, C., & Da Silva, F. L. (2005). Beta rebound after different types of motor imagery in man. Neuroscience Letters, 378(3), 156–159.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  • Yi-Hung Liu
    • 1
  • Li-Fong Lin
    • 2
    • 5
  • Chun-Wei Chou
    • 3
  • Yun Chang
    • 1
  • Yu-Tsung Hsiao
    • 1
  • Wei-Chun Hsu
    • 4
    • 6
    • 7
  1. 1.Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.Department of Physical Medicine and Rehabilitation, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
  3. 3.Department of Mechanical EngineeringChung Yuan Christian UniversityTaipeiTaiwan
  4. 4.Graduate Institute of Biomedical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  5. 5.School of Gerontology and Health ManagementTaipei Medical UniversityTaipeiTaiwan
  6. 6.National Defense Medical CenterTaipeiTaiwan
  7. 7.Department of Athletic PerformanceNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations