Skip to main content

Advertisement

Log in

Real Time Eye Blink Extraction Circuit Design from EEG Signal for ALS Patients

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The paper explores the detail design of electroencephalogram (EEG) based eye blink circuit module for Amyotrophic Lateral Sclerosis (ALS) patients using the Multisim Circuit design software. The EEG gives information about physiological function. It is the recording of electrical activity of the brain waves. The brain wave signal is a random, frequency domain and non-stationary signal. It is not easy to get the information from EEG signals in the time domain. Some biological artifacts (Eye blink artifacts, EMG artifacts and ECG) and technical artifacts (amplitude artifact, noise present in the power source artifact etc.) are the some artifacts in EEG signals. Eye blinks is considered as one of the important artifact for feature extraction of EEG signal. Hence, Eye blinks act as control or input signal in this paper. The goal of this paper is tracking an eye blink of a person from EEG signal sequences and extracts only intentionally eye blinks. In this work the patient EEG data is acquired, amplified and filtered. The filtered data is compared with the reference voltage level of the eye blink signal. In this way the eye blinks are extracted from ALS patient EEG data. Thus, The EEG based eye blink extraction circuit for ALS patient has been successfully designed and simulated on Multisim circuit design software. The future goal is to establish a communication channel for the patents suffering from motor disabilities using this biological artifact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acharya, U. R., Sree, S. V., Chattopadhyay, S., Yu, W., & Ang, P. C. (2011). Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural System. https://doi.org/10.1142/S0129065711002808.

    Article  Google Scholar 

  2. Barea, R., Boquete, L., Mazo, M., & Lopez, E. (2002). System for assisted mobility using eye movements based on electrooculography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 209–218.

    Article  Google Scholar 

  3. Guger, C., Ramoser, H., & Pfurtscheller, G. (2000). Real-time EEG analysis with subject-specific spatial patterns for a brain–computer interface (BCI). IEEE Transactions on Rehabilitation Engineering. https://doi.org/10.1109/86.895947.

    Article  Google Scholar 

  4. Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Transactions on Rehabilitation Engineering. https://doi.org/10.1109/86.847808.

    Article  Google Scholar 

  5. Ball, T., Kern, M., Mutschler, I., Aertsen, A., & Schulze-Bonhage, A. (2009). Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage. https://doi.org/10.1016/j.neuroimage.2009.02.028.

    Article  Google Scholar 

  6. Holz, E. M., Botrel, L., Kaufmann, T., & Kubler, A. (2015). Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: A case study. Archives of Physical Medicine and Rehabilitation, 96(3), 16–26.

    Article  Google Scholar 

  7. Li, Y., Ma, Z., Lu, W., & Li, Y. (2006). Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiological Measurement, 27(4), 425–436.

    Article  Google Scholar 

  8. Spataro, R., Ciriacono, M., Manno, C., & La, B. V. (2014). The eye-tracking computer device for communication in amyotrophic lateral sclerosis. Acta Neurologica Scandinavica. https://doi.org/10.1111/ane.12214.

    Article  Google Scholar 

  9. Tamura, H., Yan, M., Sakurai, K., & Tanno, K. (2016). EOG-sEMG human interface for communication. Computational Intelligence Neuroscience. https://doi.org/10.1155/2016/7354082.

    Article  Google Scholar 

  10. Hatanaka, Yuki, Higashihara, Mana, et al. (2017). Utility of repetitive nerve stimulation test for ALS diagnosis. Clinical Neurophysiology, 128(5), 823–829.

    Article  Google Scholar 

  11. Nijboer, F., Clausen, J., Allison, B. Z., & Haselager, P. (2013). The asilomar survey: Stakeholders opinions on ethical issues related to brain-computer interfacing. Neuroethics. https://doi.org/10.1007/s12152-011-9132-6.

    Article  Google Scholar 

  12. Spatar, R., et al. (2017). Reaching and grasping a glass of water by locked-In ALS patients through a BCI-controlled humanoid robot. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2017.00068.

    Article  Google Scholar 

  13. General-Purpose Software for Brain-Computer Interface Research, Data Acquisition, Stimulus Presentation, and Brain Monitoring. (2010). A practical guide to brain-computer interfacing with BCI2000. New York: Springer.

    Google Scholar 

  14. Mayaud, Louis, Cabanilles, Salvador, et al. (2017). Brain-computer interface for the communication of acute patients: A feasibility study and a randomized controlled trial comparing performance with healthy participants and a traditional assistive device. Brain-Computer Interfaces, 3(4), 197–215.

    Article  Google Scholar 

  15. Higashihara, M., et al. (2012). Fasciculation potentials in ALS and the diagnostic yield of the Awaji algorithm. Muscle and Nerve, 45, 175–182.

    Article  Google Scholar 

  16. Gallagher, J. P. (1989). Pathologic laughter and crying in ALS: A search for their origin. Acta Neurologica Scandinavica, 80(2), 114–117.

    Article  Google Scholar 

  17. Tamura, H., Murata, T., Yamashita, Y., Tanno, K., & Fuse, Y. (2012). Development of the electric wheelchair hands-free semiautomatic control system using the surface-electromyogram of facial muscles. Artificial Life and Robotics, 17(2), 300–305.

    Article  Google Scholar 

  18. Brijil, C., Rajesh S., & Jha, R. (2010). Virtual keyboard BCI using eye blinks in EEG. In IEEE 6th international conference on wireless and mobile computing, networking, and communication, 2010 (pp. 446–470).

  19. Carlos, G. M., Armando, M. T., & Angel, N.V. (2012). EEG signal processing for epilepsy. In: Stevanovic, D. (Ed.), EpilepsyHistological, electroencephalographic and psychological aspects. Hicksville: InTech. https://doi.org/10.5772/31609.

    Google Scholar 

  20. McCane, L. M., Heckman, S. M., et al. (2015). P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clinical Neurophysiology, 126(11), 2124–2131.

    Article  Google Scholar 

  21. Elif Derya Übeyli. (2009). Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Processing, 19(2), 297–308. https://doi.org/10.1016/j.dsp.2008.07.004.

    Article  Google Scholar 

  22. Babiloni, C., et al. (2009). Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. International Review Neurobiology. https://doi.org/10.1016/S0074-7742(09)86005-4.

    Article  Google Scholar 

  23. Wolpaw, J. R., et al. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.

    Article  Google Scholar 

  24. Zhang, L., Wang, Y., & He, C. (2012). Online removal of eye blink artifact from scalp EEG using canonical correlation analysis based method. Journal of Mechanics in Medicine and Biology. https://doi.org/10.1142/S0219519412500911.

    Article  Google Scholar 

  25. Ogawa, G., Sonoo, M., Hatanaka, Y., Kaida, K., & Kamakura, K. (2013). A new maneuver for repetitive nerve stimulation test in the trapezius muscle. Muscle and Nerve, 47(5), 668–672.

    Article  Google Scholar 

  26. Sanders, D. B. (1993). Clinical neurophysiology of disorders of the neuromuscular junction. Journal of Clinical Neurophysiology, 10(2), 167–180.

    Article  Google Scholar 

  27. Rangaraj, M. R. (2015). Biomedical signal analysis: A case study approach. New York: Wiley-IEEE Press.

    Google Scholar 

  28. Penny, W. D., Roberts, S. J., Curran, E. A., & Stokes, M. J. (2000). EEG-based communication: A pattern recognition approach. IEEE Transactions on Rehabilitation Engineering, 8(2), 214–215.

    Article  Google Scholar 

  29. Schrooten, M., Smetcoren, C., Robberecht, W., & Van, D. P. (2011). Benefit of the awaji diagnostic algorithm for amyotrophic lateral sclerosis: A prospective study. Annals of Neurology. https://doi.org/10.1002/ana.22380.

    Article  Google Scholar 

  30. Sanei, S., & Chambers, J. A. (2007). EEG signal processing. Hoboken: Wiley.

    Book  Google Scholar 

  31. Tauchi, T., et al. (2014). Characteristics and surgical results of the distal type of cervical spondylotic amyotrophy. Journal of Neurosurgery: Spine. https://doi.org/10.3171/2014.4.

    Article  Google Scholar 

  32. Shoker, L., Sanei, S., Wang, W., & Chambers, J. A. (2005). Removal of eye blinking artifact from the electro-encephalogram, incorporating a new constrained blind source separation algorithm. Medical & Biological Engineering & Computing, 43(2), 290–305.

    Article  Google Scholar 

  33. Acharya, U. R., Sree, S. V., Chattopadhyay, S., Yu, W., & Ang, P. C. (2011). Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems, 21(3), 199–211. https://doi.org/10.1142/S0129065711002808.

    Article  Google Scholar 

  34. Gayakwad, R. A. (2015). Op-amps and linear integrated circuit (4th ed.). Chennai: Pearson Education.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Ranjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Arya, R., Kshirsagar, P. et al. Real Time Eye Blink Extraction Circuit Design from EEG Signal for ALS Patients. J. Med. Biol. Eng. 38, 933–942 (2018). https://doi.org/10.1007/s40846-017-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0357-7

Keywords

Navigation