Advertisement

Alteration of Strain Distribution in Distal Tibia After Triple Arthrodesis: Experimental and Finite Element Investigations

  • Ahmad Chitsazan
  • Walter Herzog
  • Gholamreza Rouhi
  • Mostafa Abbasi
Original Article

Abstract

Arthrodesis, or fusion of subtalar joints (STJs), is a well-accepted and a routine treatment in the end stage of ankle injuries or disorder, such as arthritis or fractures. Arthrodesis can restore daily life function quickly at the expense of limiting joint motion. A triple arthrodesis (TA) consists of the surgical fusion of the talocalcaneal (TC), talonavicular (TN), and calcaneocuboid (CC) joints in the foot. This study aimed at investigating the effects of TA on strain distribution around tibia near the ankle joint. A finite element (FE) model, generated using computed tomography (CT) images of the human ankle, was then used to estimate stress distribution on the ankle joint surface. Axial load was applied to a human cadaveric ankle before and after TA, and load patterns were determined in various anatomical positions by measuring strain distribution around the tibia. Therefore, the effects of fusion were investigated by comparing strain distribution obtained from experiment and from FE model before and following to fusion. A good agreement between the experiment and FE, for the mean value of experimentally measured strains per the strains determined by FEM was observed (1.4 ± 0.32 before TA, and 1.51 ± 0.49 after TA). Moreover, a well-accepted point-by-point comparison between FE results and experimentally measured strains was observed with a good correlation coefficient (r = 0.94). Results of this study showed that: (1) there was a significant difference in strain magnitude and strain distribution around the tibia before and after TA; (2) the strain and stress were more uniformly distributed after fusion; and (3) the peak strain and stress values were shifted to the lateral and anterolateral portion of the tibia after the fusion. Results of this investigation showed that STJs fusion reduces the average values of strains around the cortical bone through changing the pattern of load transmission at the ankle joint.

Keywords

Ankle joint Subtalar joints (STJs) fusion Strain gauge Strain and stress distribution Experimental investigation Finite element analysis (FEA) 

Notes

Acknowledgements

We acknowledge the support of the Iran National Science and Foundation (INSF) under Grant No. 91004528, Iranian tissue bank center (ITB), and Amirkabir University of Technology. The authors also would like to acknowledge Dr. S. Pezeshki(orthopedic surgeon) for the arthrodesis surgery, and the help in medical imaging given by Mrs. S. Serajzadeh (technologist), of the department of imaging, Shafa Yahyaian Hospital, Iran University of Medical Sciences. Dr. Z. Ghayoumi’s assistance on the statistical analyses is gratefully appreciated.

Compliance with Ethical Standard

Conflict of interest

The authors have no conflict of interest to report.

References

  1. 1.
    Dettwylera, M., Stacoffa, A., Inès, A., Quervaina, K., & Stüssia, E. (2004). Modelling of the ankle joint complex. Reflections with regards to ankle prostheses. Journal of Foot and Ankle Surgery, 10, 109–119.CrossRefGoogle Scholar
  2. 2.
    Ajai, S. (2011). A review of the STAR prosthetic system and the biomechanical considerations in total ankle replacements. Journal of Foot and Ankle Surgery, 17, 64–67.CrossRefGoogle Scholar
  3. 3.
    Kura, H., Kitaoka, H. B., Luo, Z., & An, K. (1998). Measurement of surface contact area of the ankle joint. Journal of Clinical Biomechanics, 13, 365–370.CrossRefGoogle Scholar
  4. 4.
    Tochigi, Y., Rudert, M. J., Saltzman, C. L., Amendoula, A., & Brown, T. D. (2006). Contribution of articular surface geometry to ankle stabilization. Journal of Bone & Joint Surgery, 88-A, 2704–2713.CrossRefGoogle Scholar
  5. 5.
    Chitsazan, A., Rouhi, G., Pezeshki, S., Abbasi, M., & Tavakoli, A. H. (2015). Assessment of stress distribution in ankle joint: simultaneous application of experimental and finite element methods. Journal of International Experimental and Computational Biomechanics, 3(1), 45–61.CrossRefGoogle Scholar
  6. 6.
    Kakkar, R., & Siddique, M. S. (2011). Stresses in the ankle joint and total ankle replacement design. Journal of Foot and Ankle Surgery, 17, 58–63.CrossRefGoogle Scholar
  7. 7.
    Mononen, M. E., Tanska, P., Isaksson, H., & Korhonen, R. K. (2016). A Novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the osteoarthritis initiative. Journal of Scintific Report. doi: 10.1038/srep21415.Google Scholar
  8. 8.
    Campbell W. C., Crenshaw, A. H. (1987). Arthroplasty of ankle and knee. Campbell’s operative orthopedics. St. Lois Mosby, 1145–50. ISBN: 0801610656 9780801610653.Google Scholar
  9. 9.
    Beyaert, C., Sirveaux, F., Paysant, J., Mole, D., & Andre, J. M. (2004). The effect of tibio-talar arthrodesis on foot kinematics and ground reaction force progression during walking. Journal of Gait & Posture, 20, 84–91.CrossRefGoogle Scholar
  10. 10.
    Thomas, R., Daniels, T. R., & Parker, K. (2006). Gait analysis and functional outcomes following ankle arthrodesis for isolated ankle arthritis. American Journal of Bone and Joint Surgery, 88, 526–535.Google Scholar
  11. 11.
    Henne, T. D., & Anderson, J. G. (2002). Total ankle arthroplasty: a historical perspective. Journal of Foot and Ankle Clinics, 7, 695–702.CrossRefGoogle Scholar
  12. 12.
    Saltzman, C. L. (2000). Perspective on total ankle replacement. Journal of Foot and Ankle Clinics, 5, 761–775.Google Scholar
  13. 13.
    Button, G., & Pinney, S. (2004). A meta-analysis of outcome rating scales in foot and ankle surgery: is there a valid, reliable, and responsive system? Journal of Foot & Ankle International, 25, 521–525.CrossRefGoogle Scholar
  14. 14.
    Herron, M. L. (2006). A review of outcome measures for the ankle and hindfoot. Journal of Foot and Ankle Surgery, 12, 161–167.CrossRefGoogle Scholar
  15. 15.
    Naal, F. D., Impellizzeri, F. M., & Rippstein, P. F. (2010). Which are the most frequently used outcome instruments in studies on total ankle arthroplasty? Journal of Clinical Orthopaedics and Related Research, 468, 815–826.CrossRefGoogle Scholar
  16. 16.
    Bonasia, D. E., Dettoni, F., Femino, J. E., Phisitkul, P., Germano, M., & Amendola, A. (2010). Total ankle replacement: Why, when and how? Journal of Iowa Orthopeic, 30, 119–130.Google Scholar
  17. 17.
    Ryerson, E. W. (2008). Arthrodesing operations on the feet. Journal of Clinical Orthopaedics and Related Research, 466(1), 5–14.CrossRefGoogle Scholar
  18. 18.
    Knupp, M., Stufkens, S. A., & Hintermann, B. (2011). Triple arthrodesis. Journal of Foot Ankle Clinic, 16(1), 61–67.CrossRefGoogle Scholar
  19. 19.
    Muir, D. C., Amendola, A., & Saltzman, C. L. (2002). Long-term outcome of ankle arthrodesis. Journal of Foot and Ankle Clinics, 7(4), 703–708.CrossRefGoogle Scholar
  20. 20.
    Coester, L. M., Saltzman, C. L., Leupold, J., & Pontarelli, W. (2001). Long-term results following ankle arthrodesis for post-traumatic arthritis. Journal of Bone and Joint Surgery, 83, 219–228.CrossRefGoogle Scholar
  21. 21.
    Cordey, J., & Gautier, E. (1999). Strain gauges used in the mechanical testing of bones Part II: “In vitro” and “in vivo” technique. Journal of Injury, 30, SA14–SA20.CrossRefGoogle Scholar
  22. 22.
    O’Doherty, D. M., Butler, S. P., & Goodship, A. E. (1995). Stress protection due to external fixation system. Journal of Biomechanics, 28(5), 575–586.CrossRefGoogle Scholar
  23. 23.
    Burke, N. G., Moran, C., Din, R., Walsh, J., & Quinlan, W. R. (2010). An unusual cause of pain post ankle arthrodesis in patients with rheumatoid arthritis. Journal of The Foot, 20, 81–84.CrossRefGoogle Scholar
  24. 24.
    Beaudoin, A. J., Fiore, S. M., Krause, W. R., & Adelaar, R. S. (1991). Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints. Journal of Foot Ankle, 21(1), 19–25.CrossRefGoogle Scholar
  25. 25.
    Anderson, D. D., Goldsworthy, J. K., Li, W., Rudert, M. J., Tochigi, Y., & Brown, T. D. (2007). Physical validation of a patient-specific contact finite element model of the ankle. Journal of Biomechanics, 40, 1662–1669.CrossRefGoogle Scholar
  26. 26.
    Corazza, F., Stagni, R., Castelli, V. P., & Leardini, A. (2005). Articular contact at the tibiotalar joint in passive flexion. Journal of Biomechanics, 38, 1205–1212.CrossRefGoogle Scholar
  27. 27.
    Chitsazan ,A., Rouhi, G., Pezeshki, S., Abbasi, M., Tavakoli, A. H. (2012). Strain distribution on tibia surface during gait cycle: experimental investigation, ProceedingCSB-SCB. Conference.Google Scholar
  28. 28.
    Todd, O. M., Rudert, M. J., Koos, D. C., Pedersen, D. R., Baer, T. E., Tochigi, Y., et al. (2006). Contact stress transients during functional loading of ankle step-off incongruities. Journal of Biomechanics, 39, 617–626.CrossRefGoogle Scholar
  29. 29.
    Sugiyama, T., Meakin, L. B., Browne, W. J., Galea, G. L., Price, J. S., & Lanyon, L. E. (2012). Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. Journal of Bone Miner Research, 27(8), 1784–1793.CrossRefGoogle Scholar
  30. 30.
    Perusek, P. G., Davis, L. B., Sferra, J. J., Courtney, C. A., & D’Andrea, E. S. (2001). An extensometer for global measurement of bone strain suitable for use in vivo in humans. Journal of Biomechanics, 34, 385–391.CrossRefGoogle Scholar
  31. 31.
    Gautier, E., & Cordey, J. (1999). Strain gauges used in the mechanical testing of bones Part I: Theoretical and technical aspects. Journal of Injury, 30, 7–13.Google Scholar
  32. 32.
    Levangie, P. K., & Norkin, C. C. (2011). Joint structure and function: A comprehensive analysis (pp. 440–478). Philadelphia: Davis Company. ISBN 978-0-8036-2362-0.Google Scholar
  33. 33.
    El-Khoury, G. Y., Alliman, K. J., & Lundberg, H. J. (2004). Cartilage thickness in cadaveric ankles: Measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Journal of Radiology, 233, 768–773.CrossRefGoogle Scholar
  34. 34.
    Li, W., Anderson, D. D., Goldsworthy, J. K., Marsh, J. L., & Brown, T. D. (2008). Patient-specific finite element analysis of chronic contact stress exposure after intra-articular fracture of the tibial plafond. Journal of Orthopedic Research, 26, 1039–1045.CrossRefGoogle Scholar
  35. 35.
    Anderson, A. E., Ellis, B. J., Maas, S. A., & Weiss, J. A. (2010). Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. Journal of Biomechanics, 43(7), 1351–1357.CrossRefGoogle Scholar
  36. 36.
    Tao, K., Wang, D., Wang, C., Wang, X., Liu, A., Nester, C. J., et al. (2009). An in vivo experimental validation of a computational model of human Foot. Journal of Bionic Engineering, 6, 387–397.CrossRefGoogle Scholar
  37. 37.
    Chen, W. P., Tang, F. T., & Ju, C. W. (2001). Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis. Journal of Clinical Biomechanics, 16(7), 614–620.CrossRefGoogle Scholar
  38. 38.
    Gíslason, M. K., Stansfield, B., & Nash, D. H. (2010). Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Journal of Medical Engineering and Physics, 32(5), 523–531.CrossRefGoogle Scholar
  39. 39.
    Asgari, S. A., Hamouda, A. M. S., Mansor, J. B., Singh, H., Mahdi, E., Wirza, R., et al. (2004). Finite element modeling of a generic stemless hip implant design in comparison with conventional hip implants. Journal of Finite Element in Analysis and Design, 40, 2027–2047.CrossRefGoogle Scholar
  40. 40.
    Speirs, A. D., Heller, M. O., Duda, G. N., & Taylor, W. R. (2007). Physiologically based boundary conditions in finite element modelling. Journal of Biomechanics, 40(10), 2318–2323.CrossRefGoogle Scholar
  41. 41.
    Taylor, W. R., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M. D., et al. (2002). Determination of orthotropic bone elastic constants using FEA and modal analysis. Journal of Biomechanics, 35(6), 767–773.CrossRefGoogle Scholar
  42. 42.
    Ionescu, I., Conway, T., Schonning, A., Almutairi, M., Nicholson, D. W. (2003). Solid modeling and static finite elemet analysis of the human tibia. Conference Bioengineering June 2529 Florida. Google Scholar
  43. 43.
    Hintermann, B. (2004). Total ankle arthroplasty: historical overview current concepts and future perspectives (pp. 25–42). Wien, NY: Springer. ISBN 978-3-211-27254-1.Google Scholar
  44. 44.
    Ragone, J. G. (2006). Finite element simulation of the MRTA test of a human tibia. Thesis for the degree of M.Sc in Biomedical Engineering and Sciences (BMES). Virginia polytechnic institute and state University. https://theses.lib.vt.edu/theses/available/etd-04202006-135139/unrestricted/Ragone_thesis_final.pdf
  45. 45.
    Anderson, D. D., Deshpande, B. R., Daniel, T. E., & Baratz, M. E. (2005). A three-dimensional finite element model of the radiocarpal joint: distal radius fracture step-off and stress transfer. Journal of Iowa Orthopaedics, 25, 108–117.Google Scholar
  46. 46.
    Beumer, A., Hemert, W. L. W., Swierstra, B. A., Jasper, L. E., & Belkoff, S. M. (2003). A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Journal of Foot & Ankle International, 24(5), 426–429.CrossRefGoogle Scholar
  47. 47.
    Anderson, A. E., Ellis, B. J., Maas, S. A., Peters, C. L., & Weiss, J. A. (2008). Validation of finite element predictions of cartilage contact pressure in the human hip joint. Journal of Biomechanics, 130(5), 1–25.Google Scholar
  48. 48.
    Young, W. C., & Budynas, R. G. (2000). Roark’s formulas for stress and strain (7th ed.). New York: McGraw-Hill.Google Scholar
  49. 49.
    Cordey, J., & Gautier, E. (1999). Strain gauges used in the mechanical testing of bones Part III Strain analysis, graphic determination of the neutral axis. Journal of Injury, 30, 21–25.CrossRefGoogle Scholar
  50. 50.
    Cristofolini, L., Conti, G., Juszczyk, M., Cremonini, S., VanSintJan, S., & Viceconti, M. (2010). Structural behaviour and strain distribution of the long bones of the human lower limbs. Journal of Biomechanics, 40, 826–835.CrossRefGoogle Scholar
  51. 51.
    Gíslason, M. K., Stansfield, B., & Nash, D. H. (2010). Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Journal of Medical Engineering & Physics, 32, 523–531.CrossRefGoogle Scholar
  52. 52.
    Easley, M. E., Vertullo, C. J., Urban, W. C., & Nunley, J. A. (2002). Total ankle arthroplasty. Journal of American Academy of Orthopaedic Surgeons, 10(3), 157–167.CrossRefGoogle Scholar
  53. 53.
    Alvarez, R. (1996). Stress fracture of the tibia following extensive hindfoot and ankle arthrodesis: A report of three cases. Journal of Foot and Ankle International, 17(9), 583–584.CrossRefGoogle Scholar
  54. 54.
    Groot, I. B., Reijman, M., Luning, H. A. F., & Verhaar, J. A. N. (2008). Long-term results after a triple arthrodesis of the hindfoot: function and satisfaction in 36 patients. Journal of International Orthopaedics (SICOT), 32, 237–241.CrossRefGoogle Scholar
  55. 55.
    Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.CrossRefGoogle Scholar
  56. 56.
    Hollander, M., Wolfe, D. A., Chicken, E. (1997). Nonparametric Statistical Methods (1st ed.) (pp. 27–33 & 68–75). New York: Wiley.Google Scholar
  57. 57.
    Goh, J. C., Mech, A. M., Lee, E. H., Ang, E. J., Bayon, P., & Pho, R. W. (1992). Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Journal of Clinical Orthopaedics Related Research, 279, 223–228.Google Scholar
  58. 58.
    Peacock, M., Buckwalter, K. A., Persohn, S., Hangartner, T. N., Econs, M. J., & Hui, S. (2009). Race and Sex Differences in Bone Mineral Density and Geometry at the Femur. Journal of Bone, 45(2), 218–225.CrossRefGoogle Scholar
  59. 59.
    Capozza, R. F., Feldman, S., Mortarino, P., Reina, P. S., Schiessl, H., Rittweger, J., et al. (2010). Structural analysis of the human tibia by tomographic (pQCT) serial scans. Journal of Anatomy, 216(4), 470–481.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Ahmad Chitsazan
    • 1
  • Walter Herzog
    • 2
  • Gholamreza Rouhi
    • 1
  • Mostafa Abbasi
    • 3
  1. 1.Faculty of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of Kinesiology, Human Performance LabUniversity of CalgaryCalgaryCanada
  3. 3.Department of Mechanical and Materials EngineeringUniversity of DenverDenverUSA

Personalised recommendations