A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold

  • Alireza Shahin-Shamsabadi
  • Ata Hashemi
  • Mohammadreza Tahriri
Original Article
  • 53 Downloads

Abstract

Tissue engineering scaffolds are intended as a replacement for conventional bone grafts used in the treatment of bone damages. One of the challenges in bone tissue engineering is to fabricate scaffolds with large pores, high porosity, and at the mean time proper mechanical properties suitable for bone applications. The elastic properties Young’s modulus and yield strength) of these scaffolds have been mostly considered but since bone is a viscoelastic material it is necessary to evaluate this behavior of the scaffolds as well. In the current study the novel method of microsphere sintering as a bottom-up approach was used to fabricate porous three dimensional (3D) bone scaffolds made of poly(ε-caprolactone) with controlled properties. Different variables effective on the mechanical and architectural properties of the scaffold (including time and temperature of the sintering process) were investigated and the optimum conditions (100 min and 64.5 °C) to fabricate scaffolds with the highest possible mechanical properties and porosity were determined (Young’s modulus = 33.61 MPa, yield strength = 2.2 MPa, with 44.5% porosity). Then the viscoelastic properties of this scaffold was evaluated and studied using stress relaxation test (25% stress relaxation) and generalized Maxwell model and compared to bone. Based on these results, the highly interconnected scaffold showed proper mechanical properties, pore size and structure proper for bone tissue engineering.

Keywords

Bone scaffold Poly(ε-caprolactone) Microsphere sintering Viscoelastic behavior 

Notes

Compliance with Ethical Standards

Funding

There is no funding or support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.CrossRefGoogle Scholar
  2. 2.
    Stock, U. A., & Vacanti, J. P. (2001). Tissue engineering: Current state and prospects. Annual Review of Medicine, 52, 443–451.CrossRefGoogle Scholar
  3. 3.
    Place, E. S., Evans, N. D., & Stevens, M. M. (2009). Complexity in biomaterials for tissue engineering. Nature Materials, 8(6), 457–470.CrossRefGoogle Scholar
  4. 4.
    Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60(2), 215–228.CrossRefGoogle Scholar
  5. 5.
    Doblaré, M., García, J. M., & Gómez, M. J. (2004). Modelling bone tissue fracture and healing: A review. Engineering Fracture Mechanics, 71(13), 1809–1840.CrossRefGoogle Scholar
  6. 6.
    Laurencin, C. T., Ambrosio, A. M., Borden, M. D., & Cooper, J. A. (1999). Tissue engineering: Orthopedic applications. Annual Review of Biomedical Engineering, 1, 19–46.CrossRefGoogle Scholar
  7. 7.
    Thomson, R. C., Yaszemski, M. J., Powers, J. M., & Mikos, A. G. (1998). Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials, 19(21), 1935–1943.CrossRefGoogle Scholar
  8. 8.
    Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P., & Langer, R. (1993). Prevascularization of porous biodegradable polymers. Biotechnology and Bioengineering, 42(6), 716–723.CrossRefGoogle Scholar
  9. 9.
    Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. Journal of Biomaterials Science, 12(1), 107–124.CrossRefGoogle Scholar
  10. 10.
    Wu, G. H., & Hsu, S. H. (2015). Polymeric-based 3D printing for tissue engineering. Journal of Medical and Biological Engineering, 35(3), 285–292.CrossRefGoogle Scholar
  11. 11.
    Schmelzer, E., Over, P., Gridelli, B., & Gerlach, J. C. (2016). Response of primary human bone marrow mesenchymal stromal cells and dermal keratinocytes to thermal printer materials in vitro. Journal of Medical and Biological Engineering, 36(2), 153–167.CrossRefGoogle Scholar
  12. 12.
    Devin, J. E., Attawia, M. A., & Laurencin, C. T. (1996). Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. Journal of Biomaterials Science, 7(8), 661–669.CrossRefGoogle Scholar
  13. 13.
    Luciani, A., Coccoli, V., Orsi, S., Ambrosio, L., & Netti, P. A. (2008). PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 29(36), 4800–4807.CrossRefGoogle Scholar
  14. 14.
    Ungaro, F., Nair, L. S., & Laurencin, C. T. (2006). Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. Journal of controlled Release, 113(2), 128–136.CrossRefGoogle Scholar
  15. 15.
    Borden, M., Attawia, M., Khan, Y., & Laurencin, C. T. (2002). Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials, 23(2), 551–559.CrossRefGoogle Scholar
  16. 16.
    Boyan, B. D., Hummert, T. W., Dean, D. D., & Schwartz, Z. (1996). Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 17(2), 137–146.CrossRefGoogle Scholar
  17. 17.
    Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014–1017.CrossRefGoogle Scholar
  18. 18.
    Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529–2543.CrossRefGoogle Scholar
  19. 19.
    Marra, K. G., Szem, J. W., Kumta, P. N., DiMilla, P. A., & Weiss, L. E. (1999). In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. Journal of Biomedical Materials Research, 47(3), 324–335.CrossRefGoogle Scholar
  20. 20.
    Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical Applications of Biodegradable Polymers. Journal of Polymer Science Part, 49(12), 832–864.CrossRefGoogle Scholar
  21. 21.
    Dee, K.C., Puleo, D.A., & Bizios, R. (2003). Biomaterials. An introduction to tissue-biomaterial interactions (pp. 1–13). Wiley.Google Scholar
  22. 22.
    Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.CrossRefGoogle Scholar
  23. 23.
    Nazarov, R., Jin, H. J., & Kaplan, D. L. (2004). Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 5(3), 718–726.CrossRefGoogle Scholar
  24. 24.
    Matsuoka, S. (1992). Relaxation phenomena in polymers (p. 322). Munich: Hanser Gardner Publications.Google Scholar
  25. 25.
    Tschoegl, N. W. (2012). The phenomenological theory of linear viscoelastic behavior: an introduction. Berlin: Springer.MATHGoogle Scholar
  26. 26.
    Troyer, K. L., Estep, D. J., & Puttlitz, C. M. (2012). Viscoelastic effects during loading play an integral role in soft tissue mechanics. Acta Biomaterialia, 8(1), 234–243.CrossRefGoogle Scholar
  27. 27.
    Troyer, K. L., & Puttlitz, C. M. (2011). Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior. Acta Biomaterialia, 7(2), 700–709.CrossRefGoogle Scholar
  28. 28.
    Troyer, K. L., & Puttlitz, C. M. (2012). Nonlinear viscoelasticty plays an essential role in the functional behavior of spinal ligaments. Journal of Biomechanics, 45(4), 684–691.CrossRefGoogle Scholar
  29. 29.
    Zhang, X., & Gan, R. Z. (2014). Dynamic properties of human stapedial annular ligament measured with frequency-temperature superposition. Journal of Biomechanical Engineering, 136(8), 081004.CrossRefGoogle Scholar
  30. 30.
    Boal, D. H. (2012). Mechanics of the cell (p 608). New York: Cambridge University Press.CrossRefGoogle Scholar
  31. 31.
    Mayergoyz, I. D. (2003). Mathematical models of hysteresis and their applications (2nd ed.). New York: Elsevier Science.Google Scholar
  32. 32.
    Lakes, R. S. (2009). Viscoelastic materials (p. 461). New York: Cambridge University Press.CrossRefGoogle Scholar
  33. 33.
    Jameela, S. R., Suma, N., & Jayakrishnan, A. (1997). Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: A comparative study. Journal of Biomaterials Science, 8(6), 457–466.CrossRefGoogle Scholar
  34. 34.
    Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 4(3), 377–381.CrossRefGoogle Scholar
  35. 35.
    Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491.CrossRefGoogle Scholar
  36. 36.
    Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H. S., et al. (2003). A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24(5), 801–808.CrossRefGoogle Scholar
  37. 37.
    Gloria, A., Russo, T., D’Amora, U., Zeppetelli, S., D’Alessandro, T., Sandri, M., et al. (2013). Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. Journal of the Royal Society Interface, 10(80), 20120833.CrossRefGoogle Scholar
  38. 38.
    Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381–387.CrossRefGoogle Scholar
  39. 39.
    Tahriri, M., & Moztarzadeh, F. (2014). Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Applied Biochemistry and Biotechnology, 172(5), 2465–2479.CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Rodriguez-Perez, M. A., Reis, R. L., & Mano, J. F. (2005). Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromolecular Materials and Engineering, 290(8), 792–801.CrossRefGoogle Scholar
  41. 41.
    Alvarez, K., & Nakajima, H. (2009). Metallic scaffolds for bone regeneration. Materials, 2(3), 790–832.CrossRefGoogle Scholar
  42. 42.
    Borden, M., El-Amin, S. F., Attawia, M., & Laurencin, C. T. (2003). Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair. Biomaterials, 24(4), 597–609.CrossRefGoogle Scholar
  43. 43.
    Deligianni, D. D., Maris, A., & Missirlis, Y. F. (1994). Stress relaxation behaviour of trabecular bone specimens. Journal of Biomechanics, 27(12), 1469–1476.CrossRefGoogle Scholar
  44. 44.
    Goto, T., Sasaki, N., & Hikichi, K. (1999). Early stage-stress relaxation in compact bone. Journal of Biomechanics, 32(1), 93–97.CrossRefGoogle Scholar
  45. 45.
    Sethuraman, V., Makornkaewkeyoon, K., Khalf, A., & Madihally, S. V. (2013). Influence of scaffold forming techniques on stress relaxation behavior of polycaprolactone scaffolds. Journal of Applied Polymer Science, 130(6), 4237–4244.Google Scholar
  46. 46.
    Oskui, I. Z., & Hashemi, A. (2016). Dynamic tensile properties of bovine periodontal ligament. Journal of Biomechanics, 49(5), 756–764.CrossRefGoogle Scholar
  47. 47.
    Rho, J. Y., Ashman, R. B., & Turner, C. H. (1993). Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. Journal of Biomechanics, 26(2), 111–119.CrossRefGoogle Scholar
  48. 48.
    Reilly, D. T., Burstein, A. H., & Frankel, V. H. (1974). The elastic modulus for bone. Journal of Biomechanics, 7(3), 271–275.CrossRefGoogle Scholar
  49. 49.
    Garner, E., Lakes, R., Lee, T., Swan, C., & Brand, R. (2000). Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. Journal of Biomechanical Engineering, 122(2), 166–172.CrossRefGoogle Scholar
  50. 50.
    Donnelly, E., Williams, R. M., Downs, S. A., Dickinson, M. E., Baker, S. P., & van der Meulen, M. C. H. (2006). Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. Journal of Materials Research, 21(08), 2106–2117.CrossRefGoogle Scholar
  51. 51.
    Boccaccini, A. R., & Maquet, V. (2003). Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Composites Science and Technology, 63(16), 2417–2429.CrossRefGoogle Scholar
  52. 52.
    Lam, C. X. F., Teoh, S. H., & Hutmacher, D. W. (2007). Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polymer International, 56(6), 718–728.CrossRefGoogle Scholar
  53. 53.
    Lebourg, M., Sabater Serra, R., Mas Estelles, J., Hernandez Sanchez, F., Gomez Ribelles, J. L., & Suay Anton, J. (2008). Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. Journal of Materials Science, 19(5), 2047–2053.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Alireza Shahin-Shamsabadi
    • 1
  • Ata Hashemi
    • 1
  • Mohammadreza Tahriri
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIslamic Republic of Iran
  2. 2.Department of Development ScienceMarquette University School of DentistryMilwaukeeUSA
  3. 3.Dental Biomaterials Department, School of DentistryTehran University of Medical SciencesTehranIslamic Republic of Iran

Personalised recommendations