The Influence of Bone Modulus-density Relationships on Two-dimensional Human Proximal Femur Remodeling Results

Original Article
  • 53 Downloads

Abstract

Bone modulus-density relationships are important in the numerical simulation of bone remodeling process. This study aimed to investigate the influence of modulus-density relationships on the simulation results of two-dimensional human proximal femur remodeling process. Different combinations of modulus-density relationships (Young’s modulus E and apparent density) from previous researches were used to generate fourteen remodeling models. These models were grouped into cortical groups and trabecular groups. Models in one cortical group adopted the same cortical modulus-density relationship, and models in one trabecular group adopted the same trabecular modulus-density relationship. All models had the same initial density, remodeling parameters, and boundary conditions. A 300-day remodeling process simulation was performed for each model. At the end of remodeling, the apparent density distributions of all models were investigated. To quantify the consistency of the remodeling results from different models, degree of consistency based on Bland–Altman plot was proposed, which should be zero if remodeling results from two models are identical. The average degrees of consistency of all cortical groups were 0.274–0.294 (standard deviation 0.044–0.050), while that of trabecular groups were 0.028–0.046 (standard deviation 0.009–0.012). The results suggested that trabecular bone modulus-density relationships have a great impact on remodeling results and that the influence of cortical bone modulus-density relationships is not obvious. Further study regarding this matter needs to be implemented, and we strongly advise that sensitivity analysis of trabecular bone modulus-density relationship on numerical simulation results to be conducted for subject-specific bone remodeling study.

Keywords

Bone remodeling Modulus-density relationship Proximal femur Trabecular bone Finite element analysis (FEA) 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (No.51375304) and the State Key Fundamental Research Program of China (No.2011CB711000).

Compliance with Ethical Standards

Conflicts of interests

None of the authors have any conflict of interest to declare that could influence this work.

Ethical Approval

The CT image data of femur was obtained from a 53-year-old Chinese male cadaver without orthopedic diseases, approved by the ethical committee of Shanghai 1st people’s hospital.

References

  1. 1.
    Carter, D. R., & Hayes, W. C. (1977). The compressive behavior of bone as a two-phase porous structure. The Journal of Bone and Joint Surgery, 59, 954–962.CrossRefGoogle Scholar
  2. 2.
    Lotz, J. C., Gerhart, T. N., & Hayes, W. C. (1990). Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study. Journal of Computer Assisted Tomography, 14(1), 107–114.CrossRefGoogle Scholar
  3. 3.
    Keyak, J., Lee, I., & Skinner, H. (1994). Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. Journal of Biomedical Materials Research. doi: 10.1002/jbm.820281111.Google Scholar
  4. 4.
    Fischer, K. J., Jacobs, C. R., Levenston, M. E., & Carter, D. R. (1997). Observations of convergence and uniqueness of node-based bone remodeling simulations. Annals of Biomedical Engineering. doi: 10.1007/BF02648040.Google Scholar
  5. 5.
    Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics. doi: 10.1016/S0021-9290(03)00071-X36(7.Google Scholar
  6. 6.
    Weinans, H., Sumner, D. R., Igloria, R., & Natarajan, R. N. (2000). Sensitivity of periprosthetic stress-shielding to load and the bone density–modulus relationship in subject-specific finite element models. Journal of Biomechanics. doi: 10.1016/S0021-9290(00)00036-1.Google Scholar
  7. 7.
    Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L., & Viceconti, M. (2007). Subject-specific finite element models can accurately predict strain levels in long bones. Journal of Biomechanics. doi: 10.1016/j.jbiomech.2007.02.010.Google Scholar
  8. 8.
    Austman, R. L., Milner, J. S., Holdsworth, D. W., & Dunning, C. E. (2008). The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. Journal of Biomechanics. doi: 10.1016/j.jbiomech.2008.08.017.Google Scholar
  9. 9.
    Eberle, S., Göttlinger, M., & Augat, P. (2013). An investigation to determine if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones. Medical Engineering & Physics. doi: 10.1016/j.medengphy.2012.08.022.Google Scholar
  10. 10.
    Nazemi, S. M., Amini, M., Kontulainen, S. A., Milner, J. S., Holdsworth, D. W., Masri, B. A., et al. (2015). Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density–modulus relationship. Clinical Biomechanics. doi: 10.1016/j.clinbiomech.2015.05.002.Google Scholar
  11. 11.
    Wille, H., Ruess, M., Rank, E., & Yosibash, Z. (2015). Uncertainty quantification for personalized analyses of human proximal femurs. Journal of Biomechanics. doi: 10.1016/j.jbiomech.2015.11.013.Google Scholar
  12. 12.
    Huiskes, R., Weinans, H. H. J. G., Grootenboer, H. J., Dalstra, M., Fudala, B., & Slooff, T. J. (1987). Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics, 20(11–12), 1135–1150.CrossRefGoogle Scholar
  13. 13.
    Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D. R., Turner, T. M., & Galante, J. O. (1993). The mechanism of bone remodeling and resorption around press-fitted THA stems. Journal of Biomechanics, 26(4–5), 369–382.CrossRefGoogle Scholar
  14. 14.
    Sarikanat, M., & Yildiz, H. (2011). Determination of bone density distribution in proximal femur by using the 3D orthotropic bone adaptation model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. doi: 10.1177/09544119JEIM895.Google Scholar
  15. 15.
    Perez, M. A., Fornells, P., Doblaré, M., & Garcia-Aznar, J. M. (2010). Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone. Computer methods in biomechanics and biomedical engineering. doi: 10.1080/10255840903045029.Google Scholar
  16. 16.
    Neuert, M. A., & Dunning, C. E. (2013). Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. doi: 10.1177/0954411913487841.Google Scholar
  17. 17.
    Tsouknidas, A., Anagnostidis, K., Maliaris, G., & Michailidis, N. (2012). Fracture risk in the femoral hip region: A finite element analysis supported experimental approach. Journal of Biomechanics. doi: 10.1016/j.jbiomech.2012.05.011.Google Scholar
  18. 18.
    Hambli, R., Benhamou, C. L., Jennane, R., Lespessailles, E., Skalli, W., Laporte, S., et al. (2013). Combined finite element model of human proximal femur behaviour considering remodeling and fracture. IRBM, 34(2), 191–195.CrossRefGoogle Scholar
  19. 19.
    Huiskes, R., Weinans, H., & Van Rietbergen, B. (1992). The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research, 274, 124–134.Google Scholar
  20. 20.
    Beaupré, G. S., Orr, T. E., & Carter, D. R. (1990). An approach for time-dependent bone modeling and remodeling—theoretical development. Journal of Orthopaedic Research, 8(5), 651–661.CrossRefGoogle Scholar
  21. 21.
    Tsubota, K. I., Suzuki, Y., Yamada, T., Hojo, M., Makinouchi, A., & Adachi, T. (2009). Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff’s law. Journal of biomechanics. doi: 10.1016/j.jbiomech.2009.02.030.Google Scholar
  22. 22.
    Zhu, X. H., Gong, H., Bai, X. F., & Wang, F. R. (2003). Application of subsectional relationship between elastic modulus and apparent density in the structural simulation of proximal femur. Chinese Journal of Biomedical Engineering (Chinese). doi: 10.3969/j.issn.0258-8021.2003.03.010.Google Scholar
  23. 23.
    Hou, Y. J., & Zhu, X. H. (2006). Investigation in the dependency of stiffness of cancellous bone on apparent density-based on the combination model of Rod-Rod structure and perforated plate structure. Journal of Biomedical Engineering (Chinese). doi: 10.3321/j.issn:1001-5515.2006.01.019.Google Scholar
  24. 24.
    Wille, H., Rank, E., & Yosibash, Z. (2012). Prediction of the mechanical response of the femur with uncertain elastic properties. Journal of Biomechanics. doi: 10.1016/j.jbiomech.2012.02.006.Google Scholar
  25. 25.
    Skedros, J. G., & Baucom, S. L. (2007). Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: The unfortunate historical emphasis on the human proximal femur. Journal of theoretical biology. doi: 10.1016/j.jtbi.2006.06.029.MathSciNetGoogle Scholar
  26. 26.
    Jang, I. G., & Kim, I. Y. (2010). Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling. Journal of Biomechanics. doi: 10.1016/j.jbiomech.2009.08.012.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations