Skip to main content
Log in

Investigations of Strain Fields in 3D Hydrogels Under Dynamic Confined Loading

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Hydrogels are common scaffolds used to maintain chondrocyte phenotype in culture for mechanobiology and tissue engineering studies. However, the internal strain field and the zone-specific deformation patterns of chondrocytes within hydrogels under dynamic compressive strain have not been well characterized. In this study, we characterized the strain fields within the surface, middle and bottom zones of 3-dimensional collagen and agarose hydrogel constructs, in response to 5 and 15% applied compressive strain. Hydrogel microstructure and chondrocyte deformation were also analysed and compared to uncompressed conditions using scanning electron microscopy. We observed that there are inhomogeneous strain distributions in both collagen and agarose hydrogel constructs. In collagen gels, we observed that the microstructure varied greatly between uncompressed gels to gels with 5% applied compression. The percentage porosity in the surface zone of the gel decreased significantly upon initial application of 5% compression, but remained unchanged when compressed further to 15%. In agarose gels, only the cells in the middle zone of the gel deformed significantly under compression while cells in the other zones underwent deformation that was not statistically significant. These findings indicate that deformation of chondrocytes seeded hydrogels under compression is both inhomogeneous and location-dependent. Therefore, it is important to consider these inhomogeneities in order to accurately understand how mechanical stimuli may affect chondrocyte behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. Journal of Cell Science, 125, 3015–3024.

    Article  Google Scholar 

  2. Dado, D., & Levenberg, S. (2009). Cell–scaffold mechanical interplay within engineered tissue. Seminars in Cell & Developmental Biology. doi:10.1016/j.semcdb.2009.02.001.

    Google Scholar 

  3. Tibbitt, M. W., & Anseth, K. S. (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering, 103, 655–663.

    Article  Google Scholar 

  4. Wen, Q., Basu, A., Janmey, P. A., & Yodh, A. G. (2012). Non-affine deformations in polymer hydrogels. Soft Matter, 8, 8039–8049.

    Article  Google Scholar 

  5. Neidlinger-Wilke, C., Wurtz, K., Liedert, A., Schmidt, C., Borm, W., Ignatius, A., et al. (2005). A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J Neurosurg Spine., 2, 457–465. doi:10.3171/spi.2005.2.4.0457.

    Article  Google Scholar 

  6. Wuertz, K., Urban, J. P. G., Klasen, J., Ignatius, A., Wilke, H., Claes, L., et al. (2007). Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. Journal of Orthopaedic Research, 25, 1513–1522.

    Article  Google Scholar 

  7. Sawae, Y., Shelton, J. C., Bader, D. L., & Knight, M. M. (2004). Confocal analysis of local and cellular strains in chondrocyte-agarose constructs subjected to mechanical shear. Annals of Biomedical Engineering, 32, 860–870.

    Article  Google Scholar 

  8. Lee, D. A., Knight, M. M., Bolton, J. F., Idowu, B. D., Kayser, M. V., & Bader, D. L. (2000). Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. Journal of Biomechanics, 33, 81–95.

    Article  Google Scholar 

  9. Bougault, C., Paumier, A., Aubert-Foucher, E., & Mallein-Gerin, F. (2009). Investigating conversion of mechanical force into biochemical signaling in three-dimensional chondrocyte cultures. Nature Protocols, 4, 928–938. doi:10.1038/nprot.2009.63.

    Article  Google Scholar 

  10. Shim, V., Besier, T., Lloyd, D., Mithraratne, K., & Fernandez, J. (2016).  The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait. Biomechanics and Modeling in Mechanobiology, 15, 195–204. doi:10.1007/s10237-015-0668-y.  

  11. Grodzinsky, A. J., Levenston, M. E., Jin, M., & Frank, E. H. (2000). Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2, 691–713. doi:10.1146/annurev.bioeng.2.1.691.

    Article  Google Scholar 

  12. Hasler, E. M., Herzog, W., Wu, J. Z., Müller, W., & Wyss, U. (1999). Articular cartilage biomechanics: Theoretical models, material properties, and biosynthetic response. Critical Reviews in Biomedical Engineering, 27, 415–488.

    Google Scholar 

  13. Kim, J. J., Musson, D., Mathews, B., Cornish, J., Anderson, I., & Shim, V. B. (2016). Applying physiologically relevant strains to tenocytes in an in vitro cell device induces in vivo like behaviours. ASME Journal of Biomechanical Engineering. doi:10.1115/1.4034031.

    Google Scholar 

  14. Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337–4351. doi:10.1016/S0142-9612(03)00340-5.

    Article  Google Scholar 

  15. Hoffman, A. S. (2001). Hydrogels for biomedical applications. Annals of the New York Academy of Sciences, 944, 62–73. http://www.ncbi.nlm.nih.gov/pubmed/11797696.

  16. Lee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: State of the art. Tissue Engineering Part B, Reviews, 14, 61–86. doi:10.1089/teb.2007.0150.

    Article  Google Scholar 

  17. Guaccio, A., Borselli, C., Oliviero, O., & Netti, P. A. (2008). Oxygen consumption of chondrocytes in agarose and collagen gels: A comparative analysis. Biomaterials, 29, 1484–1493. doi:10.1016/j.biomaterials.2007.12.020.

    Article  Google Scholar 

  18. van Beuningen, H. M., Stoop, R., Buma, P., Takahashi, N., van der Kraan, P. M., & van den Berg, W. B. (2002). Phenotypic differences in murine chondrocyte cell lines derived from mature articular cartilage. Osteoarthritis and Cartilage, 10, 977–986. doi:10.1053/joca.2002.0855.

    Article  Google Scholar 

  19. Kim, J., Musson, D., Shim, V., Cornish, J., & Anderson, I. (2012). Mechanobiological study of tenocytes cultured on microgrooved substrates. Journal of Biomechanics, 45, S420. doi:10.1016/S0021-9290(12)70421-9.

    Article  Google Scholar 

  20. Charette, P. G., Hunter, P. J., & Hunter, I. W. (1997). Large deformation mechanical testing of biological membranes using speckle interferometry in transmission. II: Finite element modeling. Applied Optics, 36, 2246–2251.

    Article  Google Scholar 

  21. Malcolm, D. T. K., Nielsen, P. M. F., Hunter, P. J., & Charette, P. G. (2002). Strain measurement in biaxially loaded inhomogeneous, anisotropic elastic membranes. Biomechanics and Modeling in Mechanobiology, 1, 197–210.

    Article  Google Scholar 

  22. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. doi:10.1038/nmeth.2089.

    Article  Google Scholar 

  23. Knight, M. M., Van de Breevaart Bravenboer, J., Lee, D. A., van Osch, G., Weinans, H., & Bader, D. L. (2002). Cell and nucleus deformation in compressed chondrocyte–alginate constructs: Temporal changes and calculation of cell modulus. Biochimica et Biophysica Acta (BBA)-General Subjects, 1570, 1–8.

    Article  Google Scholar 

  24. Gerecht, S., Townsend, S. A., Pressler, H., Zhu, H., Nijst, C. L. E., Bruggeman, J. P., et al. (2007). A porous photocurable elastomer for cell encapsulation and culture. Biomaterials, 28, 4826–4835. doi:10.1016/j.biomaterials.2007.07.039.

    Article  Google Scholar 

  25. Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B, Reviews, 16, 371–383. doi:10.1089/ten.teb.2009.0639.

    Article  Google Scholar 

  26. Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E., et al. (2000). Modulation of the mechanical properties of tissue engineered cartilage. Biorheology, 37, 141–147.

    Google Scholar 

  27. Raub, C. B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J. D., Putnam, A. J., et al. (2007). Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophysical Journal, 92, 2212–2222.

    Article  Google Scholar 

  28. Zehbe, R., Riesemeier, H., Kirkpatrick, C. J., & Brochhausen, C. (2012). Imaging of articular cartilage–data matching using X-ray tomography, SEM, FIB slicing and conventional histology. Micron (Oxford, England: 1993), 43, 1060–1067. doi:10.1016/j.micron.2012.05.001.

    Article  Google Scholar 

  29. Hughes, L. C., Archer, C. W. & Ap Gwynn, I. (2005). The ultrastructure of mouse articular cartilage: Collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. European Cells & Materials, 9, 68–84. http://www.ncbi.nlm.nih.gov/pubmed/15968593.

  30. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., & Hunziker, E. B. (1992). Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. Journal of Orthopedic Research, 10, 745–758. doi:10.1002/jor.1100100602.

    Article  Google Scholar 

  31. Knight, M. M., Ghori, S. A., Lee, D. A., & Bader, D. L. (1998). Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Medical Engineering & Physics, 20, 684–688.

    Article  Google Scholar 

  32. Grillet, A. M., Wyatt, N. B., & Gloe, L. M. (2012). Polymer gel rheology and adhesion. In J. De Vincente (Ed.), Rheology (pp. 59–81). Rijeka: InTech. doi:10.5772/2065.

    Google Scholar 

  33. Basu, A., Wen, Q., Mao, X., Lubensky, T. C., Janmey, P. A., & Yodh, A. G. (2011). Nonaffine displacements in flexible polymer networks. Macromolecules, 44, 1671–1679. doi:10.1021/ma1026803.

    Article  Google Scholar 

  34. Ng, K. W., Wang, C. C.-B., Mauck, R. L., Kelly, T.-A. N., Chahine, N. O., Costa, K. D., et al. (2005). A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. Journal of Orthopaedic Research, 23, 134–141. doi:10.1016/j.orthres.2004.05.015.

    Article  Google Scholar 

  35. Wang, C. C.-B., Deng, J.-M., Ateshian, G. A., & Hung, C. T. (2002). An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. Journal of Biomechanical Engineering, 124, 557–567. doi:10.1115/1.1503795.

    Article  Google Scholar 

  36. Mitchell, J. R. (1980). Rheology of gels. Journal of Texture Studies, 11, 315–337. doi:10.1111/j.1745-4603.1976.tb01140.x.

    Article  Google Scholar 

  37. Anseth, K. S., Bowman, C. N., & Brannon-Peppas, L. (1996). Mechanical properties of hydrogels and their experimental determination. Biomaterials, 17, 1647–1657. doi:10.1016/0142-9612(96)87644-7.

    Article  Google Scholar 

  38. Augenstein, K. F., Cowan, B. R., LeGrice, I. J., Nielsen, P. M. F., & Young, A. A. (2005). Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. Journal of Biomechanical Engineering, 127, 148–157. doi:10.1115/1.1835360.

    Article  Google Scholar 

  39. Parker, M. D., Azhar, M., Babarenda Gamage, T. P., Alvares, D., Taberner, A. J., & Nielsen, P. M. F. (2012). Surface deformation tracking of a silicone gel skin phantom in response to normal indentation. Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. doi:10.1109/EMBC.2012.6345984.

    Google Scholar 

  40. Kim, J. J. (2015). The development of cell gym and its applications to tissue engineering. Auckland: University of Auckland.

    Google Scholar 

  41. Wong, M., & Carter, D. R. (2003). Articular cartilage functional histomorphology and mechanobiology: A research perspective. Bone, 33, 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Health Research Council of New Zealand Grant (ERFG 11/496). The authors would also like to thank Jung Joo Kim for his contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vickie Bo Kyung Shim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Appendix (PDF 15946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, S., McGlashan, S.R., Musson, D.S.P. et al. Investigations of Strain Fields in 3D Hydrogels Under Dynamic Confined Loading. J. Med. Biol. Eng. 38, 514–522 (2018). https://doi.org/10.1007/s40846-017-0319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0319-0

Keywords

Navigation