Advertisement

Investigations of Strain Fields in 3D Hydrogels Under Dynamic Confined Loading

  • Sophia Leung
  • Susan Read McGlashan
  • David Shaun Paul Musson
  • Jillian Cornish
  • Iain Alexander Anderson
  • Vickie Bo Kyung Shim
Original Article
  • 113 Downloads

Abstract

Hydrogels are common scaffolds used to maintain chondrocyte phenotype in culture for mechanobiology and tissue engineering studies. However, the internal strain field and the zone-specific deformation patterns of chondrocytes within hydrogels under dynamic compressive strain have not been well characterized. In this study, we characterized the strain fields within the surface, middle and bottom zones of 3-dimensional collagen and agarose hydrogel constructs, in response to 5 and 15% applied compressive strain. Hydrogel microstructure and chondrocyte deformation were also analysed and compared to uncompressed conditions using scanning electron microscopy. We observed that there are inhomogeneous strain distributions in both collagen and agarose hydrogel constructs. In collagen gels, we observed that the microstructure varied greatly between uncompressed gels to gels with 5% applied compression. The percentage porosity in the surface zone of the gel decreased significantly upon initial application of 5% compression, but remained unchanged when compressed further to 15%. In agarose gels, only the cells in the middle zone of the gel deformed significantly under compression while cells in the other zones underwent deformation that was not statistically significant. These findings indicate that deformation of chondrocytes seeded hydrogels under compression is both inhomogeneous and location-dependent. Therefore, it is important to consider these inhomogeneities in order to accurately understand how mechanical stimuli may affect chondrocyte behaviour.

Keywords

Collagen gel Agarose gel Inhomogeneities Strain distribution Tissue engineering Articular cartilage 

Notes

Acknowledgements

This work has been supported by the Health Research Council of New Zealand Grant (ERFG 11/496). The authors would also like to thank Jung Joo Kim for his contribution to this work.

Supplementary material

40846_2017_319_MOESM1_ESM.pdf (15.6 mb)
Online Appendix (PDF 15946 kb)

References

  1. 1.
    Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. Journal of Cell Science, 125, 3015–3024.CrossRefGoogle Scholar
  2. 2.
    Dado, D., & Levenberg, S. (2009). Cell–scaffold mechanical interplay within engineered tissue. Seminars in Cell & Developmental Biology. doi: 10.1016/j.semcdb.2009.02.001.Google Scholar
  3. 3.
    Tibbitt, M. W., & Anseth, K. S. (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering, 103, 655–663.CrossRefGoogle Scholar
  4. 4.
    Wen, Q., Basu, A., Janmey, P. A., & Yodh, A. G. (2012). Non-affine deformations in polymer hydrogels. Soft Matter, 8, 8039–8049.CrossRefGoogle Scholar
  5. 5.
    Neidlinger-Wilke, C., Wurtz, K., Liedert, A., Schmidt, C., Borm, W., Ignatius, A., et al. (2005). A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J Neurosurg Spine., 2, 457–465. doi: 10.3171/spi.2005.2.4.0457.CrossRefGoogle Scholar
  6. 6.
    Wuertz, K., Urban, J. P. G., Klasen, J., Ignatius, A., Wilke, H., Claes, L., et al. (2007). Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. Journal of Orthopaedic Research, 25, 1513–1522.CrossRefGoogle Scholar
  7. 7.
    Sawae, Y., Shelton, J. C., Bader, D. L., & Knight, M. M. (2004). Confocal analysis of local and cellular strains in chondrocyte-agarose constructs subjected to mechanical shear. Annals of Biomedical Engineering, 32, 860–870.CrossRefGoogle Scholar
  8. 8.
    Lee, D. A., Knight, M. M., Bolton, J. F., Idowu, B. D., Kayser, M. V., & Bader, D. L. (2000). Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. Journal of Biomechanics, 33, 81–95.CrossRefGoogle Scholar
  9. 9.
    Bougault, C., Paumier, A., Aubert-Foucher, E., & Mallein-Gerin, F. (2009). Investigating conversion of mechanical force into biochemical signaling in three-dimensional chondrocyte cultures. Nature Protocols, 4, 928–938. doi: 10.1038/nprot.2009.63.CrossRefGoogle Scholar
  10. 10.
    Shim, V., Besier, T., Lloyd, D., Mithraratne, K., & Fernandez, J. (2016).  The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait. Biomechanics and Modeling in Mechanobiology, 15, 195–204. doi: 10.1007/s10237-015-0668-y.  
  11. 11.
    Grodzinsky, A. J., Levenston, M. E., Jin, M., & Frank, E. H. (2000). Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2, 691–713. doi: 10.1146/annurev.bioeng.2.1.691.CrossRefGoogle Scholar
  12. 12.
    Hasler, E. M., Herzog, W., Wu, J. Z., Müller, W., & Wyss, U. (1999). Articular cartilage biomechanics: Theoretical models, material properties, and biosynthetic response. Critical Reviews in Biomedical Engineering, 27, 415–488.Google Scholar
  13. 13.
    Kim, J. J., Musson, D., Mathews, B., Cornish, J., Anderson, I., & Shim, V. B. (2016). Applying physiologically relevant strains to tenocytes in an in vitro cell device induces in vivo like behaviours. ASME Journal of Biomechanical Engineering. doi: 10.1115/1.4034031.Google Scholar
  14. 14.
    Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337–4351. doi: 10.1016/S0142-9612(03)00340-5.CrossRefGoogle Scholar
  15. 15.
    Hoffman, A. S. (2001). Hydrogels for biomedical applications. Annals of the New York Academy of Sciences, 944, 62–73. http://www.ncbi.nlm.nih.gov/pubmed/11797696.
  16. 16.
    Lee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: State of the art. Tissue Engineering Part B, Reviews, 14, 61–86. doi: 10.1089/teb.2007.0150.CrossRefGoogle Scholar
  17. 17.
    Guaccio, A., Borselli, C., Oliviero, O., & Netti, P. A. (2008). Oxygen consumption of chondrocytes in agarose and collagen gels: A comparative analysis. Biomaterials, 29, 1484–1493. doi: 10.1016/j.biomaterials.2007.12.020.CrossRefGoogle Scholar
  18. 18.
    van Beuningen, H. M., Stoop, R., Buma, P., Takahashi, N., van der Kraan, P. M., & van den Berg, W. B. (2002). Phenotypic differences in murine chondrocyte cell lines derived from mature articular cartilage. Osteoarthritis and Cartilage, 10, 977–986. doi: 10.1053/joca.2002.0855.CrossRefGoogle Scholar
  19. 19.
    Kim, J., Musson, D., Shim, V., Cornish, J., & Anderson, I. (2012). Mechanobiological study of tenocytes cultured on microgrooved substrates. Journal of Biomechanics, 45, S420. doi: 10.1016/S0021-9290(12)70421-9.CrossRefGoogle Scholar
  20. 20.
    Charette, P. G., Hunter, P. J., & Hunter, I. W. (1997). Large deformation mechanical testing of biological membranes using speckle interferometry in transmission. II: Finite element modeling. Applied Optics, 36, 2246–2251.CrossRefGoogle Scholar
  21. 21.
    Malcolm, D. T. K., Nielsen, P. M. F., Hunter, P. J., & Charette, P. G. (2002). Strain measurement in biaxially loaded inhomogeneous, anisotropic elastic membranes. Biomechanics and Modeling in Mechanobiology, 1, 197–210.CrossRefGoogle Scholar
  22. 22.
    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. doi: 10.1038/nmeth.2089.CrossRefGoogle Scholar
  23. 23.
    Knight, M. M., Van de Breevaart Bravenboer, J., Lee, D. A., van Osch, G., Weinans, H., & Bader, D. L. (2002). Cell and nucleus deformation in compressed chondrocyte–alginate constructs: Temporal changes and calculation of cell modulus. Biochimica et Biophysica Acta (BBA)-General Subjects, 1570, 1–8.CrossRefGoogle Scholar
  24. 24.
    Gerecht, S., Townsend, S. A., Pressler, H., Zhu, H., Nijst, C. L. E., Bruggeman, J. P., et al. (2007). A porous photocurable elastomer for cell encapsulation and culture. Biomaterials, 28, 4826–4835. doi: 10.1016/j.biomaterials.2007.07.039.CrossRefGoogle Scholar
  25. 25.
    Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B, Reviews, 16, 371–383. doi: 10.1089/ten.teb.2009.0639.CrossRefGoogle Scholar
  26. 26.
    Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E., et al. (2000). Modulation of the mechanical properties of tissue engineered cartilage. Biorheology, 37, 141–147.Google Scholar
  27. 27.
    Raub, C. B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J. D., Putnam, A. J., et al. (2007). Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophysical Journal, 92, 2212–2222.CrossRefGoogle Scholar
  28. 28.
    Zehbe, R., Riesemeier, H., Kirkpatrick, C. J., & Brochhausen, C. (2012). Imaging of articular cartilage–data matching using X-ray tomography, SEM, FIB slicing and conventional histology. Micron (Oxford, England: 1993), 43, 1060–1067. doi: 10.1016/j.micron.2012.05.001.CrossRefGoogle Scholar
  29. 29.
    Hughes, L. C., Archer, C. W. & Ap Gwynn, I. (2005). The ultrastructure of mouse articular cartilage: Collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. European Cells & Materials, 9, 68–84. http://www.ncbi.nlm.nih.gov/pubmed/15968593.
  30. 30.
    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., & Hunziker, E. B. (1992). Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. Journal of Orthopedic Research, 10, 745–758. doi: 10.1002/jor.1100100602.CrossRefGoogle Scholar
  31. 31.
    Knight, M. M., Ghori, S. A., Lee, D. A., & Bader, D. L. (1998). Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Medical Engineering & Physics, 20, 684–688.CrossRefGoogle Scholar
  32. 32.
    Grillet, A. M., Wyatt, N. B., & Gloe, L. M. (2012). Polymer gel rheology and adhesion. In J. De Vincente (Ed.), Rheology (pp. 59–81). Rijeka: InTech. doi: 10.5772/2065.Google Scholar
  33. 33.
    Basu, A., Wen, Q., Mao, X., Lubensky, T. C., Janmey, P. A., & Yodh, A. G. (2011). Nonaffine displacements in flexible polymer networks. Macromolecules, 44, 1671–1679. doi: 10.1021/ma1026803.CrossRefGoogle Scholar
  34. 34.
    Ng, K. W., Wang, C. C.-B., Mauck, R. L., Kelly, T.-A. N., Chahine, N. O., Costa, K. D., et al. (2005). A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. Journal of Orthopaedic Research, 23, 134–141. doi: 10.1016/j.orthres.2004.05.015.CrossRefGoogle Scholar
  35. 35.
    Wang, C. C.-B., Deng, J.-M., Ateshian, G. A., & Hung, C. T. (2002). An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. Journal of Biomechanical Engineering, 124, 557–567. doi: 10.1115/1.1503795.CrossRefGoogle Scholar
  36. 36.
    Mitchell, J. R. (1980). Rheology of gels. Journal of Texture Studies, 11, 315–337. doi: 10.1111/j.1745-4603.1976.tb01140.x.CrossRefGoogle Scholar
  37. 37.
    Anseth, K. S., Bowman, C. N., & Brannon-Peppas, L. (1996). Mechanical properties of hydrogels and their experimental determination. Biomaterials, 17, 1647–1657. doi: 10.1016/0142-9612(96)87644-7.CrossRefGoogle Scholar
  38. 38.
    Augenstein, K. F., Cowan, B. R., LeGrice, I. J., Nielsen, P. M. F., & Young, A. A. (2005). Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. Journal of Biomechanical Engineering, 127, 148–157. doi: 10.1115/1.1835360.CrossRefGoogle Scholar
  39. 39.
    Parker, M. D., Azhar, M., Babarenda Gamage, T. P., Alvares, D., Taberner, A. J., & Nielsen, P. M. F. (2012). Surface deformation tracking of a silicone gel skin phantom in response to normal indentation. Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. doi: 10.1109/EMBC.2012.6345984.Google Scholar
  40. 40.
    Kim, J. J. (2015). The development of cell gym and its applications to tissue engineering. Auckland: University of Auckland.Google Scholar
  41. 41.
    Wong, M., & Carter, D. R. (2003). Articular cartilage functional histomorphology and mechanobiology: A research perspective. Bone, 33, 1–13.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Medicine, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Anatomy, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations