Skip to main content

Advertisement

Log in

In Vitro Haematopoietic Differentiation from Pluripotent Stem Cells or by Direct Lineage Conversion: Current Advances and Challenges

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The feasibility and possibility of in vitro haematopoiesis for clinical use such as cell therapy or substitution therapy have been discussed for years. In this review, we summarized the most promising and efficient strategies for in vitro haematopoietic cells production: the three-dimensional aggregates of pluripotent stem cells called embryoid bodies, a co-culturing system using feeder cells, and an extracellular matrix-coated dish system. We discussed the terminal differentiation of various types of blood cells using pluripotent stem cells or by direct lineage conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Filippi, M. D., & Sainteny, F. (2001). Hematopoietic differentiation of embryonic stem cells in mice: A model to study the biology of hematopoiesis. Transfusion Clinique et Biologique, 8(1), 6–16.

    Article  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  Google Scholar 

  3. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi:10.1016/j.cell.2006.07.024.

    Article  Google Scholar 

  4. Suzuki, N., Yamazaki, S., Yamaguchi, T., Okabe, M., Masaki, H., Takaki, S., et al. (2013). Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Molecular Therapy, 21(7), 1424–1431. doi:10.1038/mt.2013.71.

    Article  Google Scholar 

  5. Tashiro, K., Kawabata, K., Omori, M., Yamaguchi, T., Sakurai, F., Katayama, K., et al. (2012). Promotion of hematopoietic differentiation from mouse induced pluripotent stem cells by transient HoxB4 transduction. Stem Cell Research, 8(2), 300–311. doi:10.1016/j.scr.2011.09.001.

    Article  Google Scholar 

  6. Tolar, J., Park, I. H., Xia, L., Lees, C. J., Peacock, B., Webber, B., et al. (2011). Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood, 117(3), 839–847. doi:10.1182/blood-2010-05-287607.

    Article  Google Scholar 

  7. Szabo, E., Rampalli, S., Risueno, R. M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., et al. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521–526. doi:10.1038/nature09591.

    Article  Google Scholar 

  8. MacLean-Hunter, S., Makela, T. P., Grzeschiczek, A., Alitalo, K., & Moroy, T. (1994). Expression of a rlf/L-myc minigene inhibits differentiation of embryonic stem cells and embroid body formation. Oncogene, 9(12), 3509–3517.

    Google Scholar 

  9. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  Google Scholar 

  10. Player, A., Wang, Y., Rao, M., & Kawasaki, E. (2007). Gene expression analysis of RNA purified from embryonic stem cells and embryoid body-derived cells using a high-throughput microarray platform. Current Protocols in Stem Cell Biology. doi:10.1002/9780470151808.sc01b02s2.

    Google Scholar 

  11. Sepulveda, D. E., Andrews, B. A., Asenjo, J. A., & Papoutsakis, E. T. (2008). Comparative transcriptional analysis of embryoid body versus two-dimensional differentiation of murine embryonic stem cells. Tissue Engineering Part A, 14(10), 1603–1614. doi:10.1089/tea.2007.0331.

    Article  Google Scholar 

  12. Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., & Elefanty, A. G. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood, 106(5), 1601–1603. doi:10.1182/blood-2005-03-0987.

    Article  Google Scholar 

  13. Ng, E. S., Davis, R., Stanley, E. G., & Elefanty, A. G. (2008). A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nature Protocols, 3(5), 768–776. doi:10.1038/nprot.2008.42.

    Article  Google Scholar 

  14. Antonchuk, J. (2013). Formation of embryoid bodies from human pluripotent stem cells using AggreWell plates. Methods in Molecular Biology, 946, 523–533. doi:10.1007/978-1-62703-128-8_32.

    Article  Google Scholar 

  15. Ji, J., Vijayaragavan, K., Bosse, M., Menendez, P., Weisel, K., & Bhatia, M. (2008). OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells, 26(10), 2485–2495. doi:10.1634/stemcells.2008-0642.

    Article  Google Scholar 

  16. Vodyanik, M. A., Bork, J. A., Thomson, J. A., & Slukvin, I. I. (2005). Human embryonic stem cell-derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2), 617–626. doi:10.1182/blood-2004-04-1649.

    Article  Google Scholar 

  17. Choi, K. D., Yu, J., Smuga-Otto, K., Salvagiotto, G., Rehrauer, W., Vodyanik, M., et al. (2009). Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells, 27(3), 559–567. doi:10.1634/stemcells.2008-0922.

    Article  Google Scholar 

  18. Ma, F., Ebihara, Y., Umeda, K., Sakai, H., Hanada, S., Zhang, H., et al. (2008). Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13087–13092. doi:10.1073/pnas.0802220105.

    Article  Google Scholar 

  19. Niwa, A., Heike, T., Umeda, K., Oshima, K., Kato, I., Sakai, H., et al. (2011). A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS ONE, 6(7), e22261. doi:10.1371/journal.pone.0022261.

    Article  Google Scholar 

  20. Chicha, L., Feki, A., Boni, A., Irion, O., Hovatta, O., & Jaconi, M. (2011). Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34 and CD34+ progenitors with distinct characteristics. PLoS ONE, 6(2), e14733. doi:10.1371/journal.pone.0014733.

    Article  Google Scholar 

  21. Salvagiotto, G., Burton, S., Daigh, C. A., Rajesh, D., Slukvin, I. I., & Seay, N. J. (2011). A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS ONE, 6(3), e17829. doi:10.1371/journal.pone.0017829.

    Article  Google Scholar 

  22. Liang, H. C., Holmes, R., & Zuniga-Pflucker, J. C. (2013). Directed differentiation of embryonic stem cells to the T-lymphocyte lineage. Methods in Molecular Biology, 1029, 119–128. doi:10.1007/978-1-62703-478-4_9.

    Article  Google Scholar 

  23. Lei, F., Haque, R., Xiong, X., & Song, J. (2012). Directed differentiation of induced pluripotent stem cells towards T lymphocytes. Journal of Visualized Experiments, 63, e3986. doi:10.3791/3986.

    Google Scholar 

  24. Kitajima, K., Kawaguchi, M., Miyashita, K., Nakajima, M., Kanokoda, M., & Hara, T. (2015). Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes to Cells, 20(9), 720–738. doi:10.1111/gtc.12266.

    Article  Google Scholar 

  25. Zhu, M. X., Wan, W. L., Li, H. S., Wang, J., Chen, G. A., & Ke, X. Y. (2015). Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro. Experimental Cell Research, 331(2), 387–398. doi:10.1016/j.yexcr.2014.12.012.

    Article  Google Scholar 

  26. Woll, P. S., Grzywacz, B., Tian, X., Marcus, R. K., Knorr, D. A., Verneris, M. R., et al. (2009). Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood, 113(24), 6094–6101. doi:10.1182/blood-2008-06-165225.

    Article  Google Scholar 

  27. Chen, U., Kosco, M., & Staerz, U. (1992). Establishment and characterization of lymphoid and myeloid mixed-cell populations from mouse late embryoid bodies, “embryonic-stem-cell fetuses”. Proceedings of the National Academy of Sciences of the United States of America, 89(7), 2541–2545.

    Article  Google Scholar 

  28. Chen, U., & Mok, H. (1995). Development of mouse embryonic stem (ES) cells: IV. Differentiation to mature T and B lymphocytes after implantation of embryoid bodies into nude mice. Developmental Immunology, 4(2), 79–84.

    Article  Google Scholar 

  29. Wada, H., Kojo, S., Kusama, C., Okamoto, N., Sato, Y., Ishizuka, B., et al. (2011). Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells. International Immunology, 23(1), 65–74. doi:10.1093/intimm/dxq458.

    Article  Google Scholar 

  30. Carpenter, L., Malladi, R., Yang, C. T., French, A., Pilkington, K. J., Forsey, R. W., et al. (2011). Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood, 117(15), 4008–4011. doi:10.1182/blood-2010-08-299941.

    Article  Google Scholar 

  31. Goodridge, H. S. (2014). Induced pluripotent stem cell-derived myeloid phagocytes: Disease modeling and therapeutic applications. Drug Discovery Today, 19(6), 774–780. doi:10.1016/j.drudis.2014.01.004.

    Article  Google Scholar 

  32. Morishima, T., Watanabe, K., Niwa, A., Fujino, H., Matsubara, H., Adachi, S., et al. (2011). Neutrophil differentiation from human-induced pluripotent stem cells. Journal of Cellular Physiology, 226(5), 1283–1291. doi:10.1002/jcp.22456.

    Article  Google Scholar 

  33. Choi, K. D., Vodyanik, M. A., & Slukvin, I. I. (2009). Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived linCD34+CD43+CD45+ progenitors. Journal of Clinical Investigation, 119(9), 2818–2829. doi:10.1172/JCI38591.

    Article  Google Scholar 

  34. Kambal, A., Mitchell, G., Cary, W., Gruenloh, W., Jung, Y., Kalomoiris, S., et al. (2011). Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. Molecular Therapy, 19(3), 584–593. doi:10.1038/mt.2010.269.

    Article  Google Scholar 

  35. van Wilgenburg, B., Browne, C., Vowles, J., & Cowley, S. A. (2013). Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS ONE, 8(8), e71098. doi:10.1371/journal.pone.0071098.

    Article  Google Scholar 

  36. Zhan, X., Dravid, G., Ye, Z., Hammond, H., Shamblott, M., Gearhart, J., et al. (2004). Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet, 364(9429), 163–171. doi:10.1016/S0140-6736(04)16629-4.

    Article  Google Scholar 

  37. Su, Z., Frye, C., Bae, K. M., Kelley, V., & Vieweg, J. (2008). Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clinical Cancer Research, 14(19), 6207–6217. doi:10.1158/1078-0432.CCR-08-0309.

    Article  Google Scholar 

  38. Tseng, S. Y., Nishimoto, K. P., Silk, K. M., Majumdar, A. S., Dawes, G. N., Waldmann, H., et al. (2009). Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regenerative Medicine, 4(4), 513–526. doi:10.2217/rme.09.25.

    Article  Google Scholar 

  39. Nishimoto, K. P., Tseng, S. Y., Lebkowski, J. S., & Reddy, A. (2011). Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency. Regenerative Medicine, 6(3), 303–318. doi:10.2217/rme.11.19.

    Article  Google Scholar 

  40. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., et al. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 102(3), 906–915. doi:10.1182/blood-2003-03-0832.

    Article  Google Scholar 

  41. Kobari, L., Yates, F., Oudrhiri, N., Francina, A., Kiger, L., Mazurier, C., et al. (2012). Human induced pluripotent stem cells can reach complete terminal maturation: In vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica, 97(12), 1795–1803. doi:10.3324/haematol.2011.055566.

    Article  Google Scholar 

  42. Mazurier, C., Douay, L., & Lapillonne, H. (2011). Red blood cells from induced pluripotent stem cells: Hurdles and developments. Current Opinion in Hematology, 18(4), 249–253. doi:10.1097/MOH.0b013e3283476129.

    Article  Google Scholar 

  43. Lu, S. J., Feng, Q., Ivanova, Y., Luo, C., Li, T., Li, F., et al. (2007). Recombinant HoxB4 fusion proteins enhance hematopoietic differentiation of human embryonic stem cells. Stem Cells Development, 16(4), 547–559. doi:10.1089/scd.2007.0002.

    Article  Google Scholar 

  44. Sun, S., Jackson, C. W., & Ravid, K. (2000). MAP kinase localizes to the platelet-yielding demarcation membrane system in megakaryocytes. Blood, 95(4), 1511.

    Google Scholar 

  45. Mahaut-Smith, M. P., Thomas, D., Higham, A. B., Usher-Smith, J. A., Hussain, J. F., Martinez-Pinna, J., et al. (2003). Properties of the demarcation membrane system in living rat megakaryocytes. Biophysical Journal, 84(4), 2646–2654. doi:10.1016/S0006-3495(03)75070-X.

    Article  Google Scholar 

  46. Eckly, A., Heijnen, H., Pertuy, F., Geerts, W., Proamer, F., Rinckel, J. Y., et al. (2014). Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood, 123(6), 921–930. doi:10.1182/blood-2013-03-492330.

    Article  Google Scholar 

  47. Lim, C. K., Hwang, W. Y., Aw, S. E., & Sun, L. (2008). Study of gene expression profile during cord blood-associated megakaryopoiesis. European Journal of Haematology, 81(3), 196–208. doi:10.1111/j.1600-0609.2008.01104.x.

    Article  Google Scholar 

  48. Briggs, M., Adams, J. A., Brereton, M. L., Burgess, R., Hyde, K., Lenehan, H., et al. (2001). Comparison of megakaryopoiesis in vitro of paired peripheral blood progenitor cells and bone marrow harvested during remission in patients with acute myeloid leukaemia. British Journal of Haematology, 115(3), 563–568.

    Article  Google Scholar 

  49. Miyazaki, R., Ogata, H., Iguchi, T., Sogo, S., Kushida, T., Ito, T., et al. (2000). Comparative analyses of megakaryocytes derived from cord blood and bone marrow. British Journal of Haematology, 108(3), 602–609.

    Article  Google Scholar 

  50. Catani, L., Gugliotta, L., Campanini, E., Mangianti, S., Gibellini, D., Baravelli, S., et al. (1998). Megakaryocyte progenitors derived from bone marrow or G-CSF-mobilized peripheral blood CD34 cells show a distinct phenotype and responsiveness to interleukin-3 (IL-3) and PEG-recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF). British Journal of Haematology, 100(1), 207–218.

    Article  Google Scholar 

  51. Gaur, M., Kamata, T., Wang, S., Moran, B., Shattil, S. J., & Leavitt, A. D. (2006). Megakaryocytes derived from human embryonic stem cells: A genetically tractable system to study megakaryocytopoiesis and integrin function. Journal of Thrombosis and Haemostasis, 4(2), 436–442. doi:10.1111/j.1538-7836.2006.01744.x.

    Article  Google Scholar 

  52. Takayama, N., & Eto, K. (2012). In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced pluripotent stem cells. Methods in Molecular Biology, 788, 205–217. doi:10.1007/978-1-61779-307-3_15.

    Article  Google Scholar 

  53. Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., et al. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509. doi:10.1038/nmeth1041.

    Article  Google Scholar 

  54. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386. doi:10.1016/j.cell.2010.07.002.

    Article  Google Scholar 

  55. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041. doi:10.1038/nature08797.

    Article  Google Scholar 

  56. Yang, R., Zheng, Y., Li, L., Liu, S., Burrows, M., Wei, Z., et al. (2014). Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nature Communications, 5, 5807. doi:10.1038/ncomms6807.

    Article  Google Scholar 

  57. Yamamoto, K., Kishida, T., Sato, Y., Nishioka, K., Ejima, A., Fujiwara, H., et al. (2015). Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 6152–6157. doi:10.1073/pnas.1420713112.

    Article  Google Scholar 

  58. Zhang, K., Liu, G. H., Yi, F., Montserrat, N., Hishida, T., Esteban, C. R., et al. (2014). Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell, 5(1), 48–58. doi:10.1007/s13238-013-0011-2.

    Article  Google Scholar 

  59. Efe, J. A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13(3), 215–222. doi:10.1038/ncb2164.

    Article  Google Scholar 

  60. Kim, J., Efe, J. A., Zhu, S., Talantova, M., Yuan, X., Wang, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7838–7843. doi:10.1073/pnas.1103113108.

    Article  Google Scholar 

  61. Rafii, S., Kloss, C. C., Butler, J. M., Ginsberg, M., Gars, E., Lis, R., et al. (2013). Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood, 121(5), 770–780. doi:10.1182/blood-2012-07-444208.

    Article  Google Scholar 

  62. Sandler, V. M., Lis, R., Liu, Y., Kedem, A., James, D., Elemento, O., et al. (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511(7509), 312–318. doi:10.1038/nature13547.

    Article  Google Scholar 

  63. Hu, W., Qiu, B., Guan, W., Wang, Q., Wang, M., Li, W., et al. (2015). Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17(2), 204–212. doi:10.1016/j.stem.2015.07.006.

    Article  Google Scholar 

  64. Victor, M. B., Richner, M., Hermanstyne, T. O., Ransdell, J. L., Sobieski, C., Deng, P. Y., et al. (2014). Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron, 84(2), 311–323. doi:10.1016/j.neuron.2014.10.016.

    Article  Google Scholar 

  65. Woods, N. B., Parker, A. S., Moraghebi, R., Lutz, M. K., Firth, A. L., Brennand, K. J., et al. (2011). Brief report: Efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines. Stem Cells, 29(7), 1158–1164.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 81400093).

Author information

Authors and Affiliations

Authors

Contributions

Cheng has been involved in writing, compiling the manuscript. R Zhang and Peng contributed significantly on literature and critical suggestions to reshape the manuscript. GS Zhang conceived the concept of this review, and revised it critically for publication standards. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Guangsen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have on competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Peng, H., Zhang, R. et al. In Vitro Haematopoietic Differentiation from Pluripotent Stem Cells or by Direct Lineage Conversion: Current Advances and Challenges. J. Med. Biol. Eng. 38, 186–196 (2018). https://doi.org/10.1007/s40846-017-0311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0311-8

Keywords

Navigation