Journal of Medical and Biological Engineering

, Volume 38, Issue 2, pp 186–196 | Cite as

In Vitro Haematopoietic Differentiation from Pluripotent Stem Cells or by Direct Lineage Conversion: Current Advances and Challenges

  • Zhao Cheng
  • Hongling Peng
  • Rong Zhang
  • Guangsen Zhang
Original Article


The feasibility and possibility of in vitro haematopoiesis for clinical use such as cell therapy or substitution therapy have been discussed for years. In this review, we summarized the most promising and efficient strategies for in vitro haematopoietic cells production: the three-dimensional aggregates of pluripotent stem cells called embryoid bodies, a co-culturing system using feeder cells, and an extracellular matrix-coated dish system. We discussed the terminal differentiation of various types of blood cells using pluripotent stem cells or by direct lineage conversion.


In vitro haematopoiesis Pluripotent stem cells Direct lineage conversion 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 81400093).

Authors’ Contributions

Cheng has been involved in writing, compiling the manuscript. R Zhang and Peng contributed significantly on literature and critical suggestions to reshape the manuscript. GS Zhang conceived the concept of this review, and revised it critically for publication standards. All authors read and approved the final version of manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have on competing interest.


  1. 1.
    Filippi, M. D., & Sainteny, F. (2001). Hematopoietic differentiation of embryonic stem cells in mice: A model to study the biology of hematopoiesis. Transfusion Clinique et Biologique, 8(1), 6–16.CrossRefGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.CrossRefGoogle Scholar
  3. 3.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi: 10.1016/j.cell.2006.07.024.CrossRefGoogle Scholar
  4. 4.
    Suzuki, N., Yamazaki, S., Yamaguchi, T., Okabe, M., Masaki, H., Takaki, S., et al. (2013). Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Molecular Therapy, 21(7), 1424–1431. doi: 10.1038/mt.2013.71.CrossRefGoogle Scholar
  5. 5.
    Tashiro, K., Kawabata, K., Omori, M., Yamaguchi, T., Sakurai, F., Katayama, K., et al. (2012). Promotion of hematopoietic differentiation from mouse induced pluripotent stem cells by transient HoxB4 transduction. Stem Cell Research, 8(2), 300–311. doi: 10.1016/j.scr.2011.09.001.CrossRefGoogle Scholar
  6. 6.
    Tolar, J., Park, I. H., Xia, L., Lees, C. J., Peacock, B., Webber, B., et al. (2011). Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood, 117(3), 839–847. doi: 10.1182/blood-2010-05-287607.CrossRefGoogle Scholar
  7. 7.
    Szabo, E., Rampalli, S., Risueno, R. M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., et al. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521–526. doi: 10.1038/nature09591.CrossRefGoogle Scholar
  8. 8.
    MacLean-Hunter, S., Makela, T. P., Grzeschiczek, A., Alitalo, K., & Moroy, T. (1994). Expression of a rlf/L-myc minigene inhibits differentiation of embryonic stem cells and embroid body formation. Oncogene, 9(12), 3509–3517.Google Scholar
  9. 9.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.CrossRefGoogle Scholar
  10. 10.
    Player, A., Wang, Y., Rao, M., & Kawasaki, E. (2007). Gene expression analysis of RNA purified from embryonic stem cells and embryoid body-derived cells using a high-throughput microarray platform. Current Protocols in Stem Cell Biology. doi: 10.1002/9780470151808.sc01b02s2.Google Scholar
  11. 11.
    Sepulveda, D. E., Andrews, B. A., Asenjo, J. A., & Papoutsakis, E. T. (2008). Comparative transcriptional analysis of embryoid body versus two-dimensional differentiation of murine embryonic stem cells. Tissue Engineering Part A, 14(10), 1603–1614. doi: 10.1089/tea.2007.0331.CrossRefGoogle Scholar
  12. 12.
    Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., & Elefanty, A. G. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood, 106(5), 1601–1603. doi: 10.1182/blood-2005-03-0987.CrossRefGoogle Scholar
  13. 13.
    Ng, E. S., Davis, R., Stanley, E. G., & Elefanty, A. G. (2008). A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nature Protocols, 3(5), 768–776. doi: 10.1038/nprot.2008.42.CrossRefGoogle Scholar
  14. 14.
    Antonchuk, J. (2013). Formation of embryoid bodies from human pluripotent stem cells using AggreWell plates. Methods in Molecular Biology, 946, 523–533. doi: 10.1007/978-1-62703-128-8_32.CrossRefGoogle Scholar
  15. 15.
    Ji, J., Vijayaragavan, K., Bosse, M., Menendez, P., Weisel, K., & Bhatia, M. (2008). OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells, 26(10), 2485–2495. doi: 10.1634/stemcells.2008-0642.CrossRefGoogle Scholar
  16. 16.
    Vodyanik, M. A., Bork, J. A., Thomson, J. A., & Slukvin, I. I. (2005). Human embryonic stem cell-derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2), 617–626. doi: 10.1182/blood-2004-04-1649.CrossRefGoogle Scholar
  17. 17.
    Choi, K. D., Yu, J., Smuga-Otto, K., Salvagiotto, G., Rehrauer, W., Vodyanik, M., et al. (2009). Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells, 27(3), 559–567. doi: 10.1634/stemcells.2008-0922.CrossRefGoogle Scholar
  18. 18.
    Ma, F., Ebihara, Y., Umeda, K., Sakai, H., Hanada, S., Zhang, H., et al. (2008). Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13087–13092. doi: 10.1073/pnas.0802220105.CrossRefGoogle Scholar
  19. 19.
    Niwa, A., Heike, T., Umeda, K., Oshima, K., Kato, I., Sakai, H., et al. (2011). A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS ONE, 6(7), e22261. doi: 10.1371/journal.pone.0022261.CrossRefGoogle Scholar
  20. 20.
    Chicha, L., Feki, A., Boni, A., Irion, O., Hovatta, O., & Jaconi, M. (2011). Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34 and CD34+ progenitors with distinct characteristics. PLoS ONE, 6(2), e14733. doi: 10.1371/journal.pone.0014733.CrossRefGoogle Scholar
  21. 21.
    Salvagiotto, G., Burton, S., Daigh, C. A., Rajesh, D., Slukvin, I. I., & Seay, N. J. (2011). A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS ONE, 6(3), e17829. doi: 10.1371/journal.pone.0017829.CrossRefGoogle Scholar
  22. 22.
    Liang, H. C., Holmes, R., & Zuniga-Pflucker, J. C. (2013). Directed differentiation of embryonic stem cells to the T-lymphocyte lineage. Methods in Molecular Biology, 1029, 119–128. doi: 10.1007/978-1-62703-478-4_9.CrossRefGoogle Scholar
  23. 23.
    Lei, F., Haque, R., Xiong, X., & Song, J. (2012). Directed differentiation of induced pluripotent stem cells towards T lymphocytes. Journal of Visualized Experiments, 63, e3986. doi: 10.3791/3986.Google Scholar
  24. 24.
    Kitajima, K., Kawaguchi, M., Miyashita, K., Nakajima, M., Kanokoda, M., & Hara, T. (2015). Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes to Cells, 20(9), 720–738. doi: 10.1111/gtc.12266.CrossRefGoogle Scholar
  25. 25.
    Zhu, M. X., Wan, W. L., Li, H. S., Wang, J., Chen, G. A., & Ke, X. Y. (2015). Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro. Experimental Cell Research, 331(2), 387–398. doi: 10.1016/j.yexcr.2014.12.012.CrossRefGoogle Scholar
  26. 26.
    Woll, P. S., Grzywacz, B., Tian, X., Marcus, R. K., Knorr, D. A., Verneris, M. R., et al. (2009). Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood, 113(24), 6094–6101. doi: 10.1182/blood-2008-06-165225.CrossRefGoogle Scholar
  27. 27.
    Chen, U., Kosco, M., & Staerz, U. (1992). Establishment and characterization of lymphoid and myeloid mixed-cell populations from mouse late embryoid bodies, “embryonic-stem-cell fetuses”. Proceedings of the National Academy of Sciences of the United States of America, 89(7), 2541–2545.CrossRefGoogle Scholar
  28. 28.
    Chen, U., & Mok, H. (1995). Development of mouse embryonic stem (ES) cells: IV. Differentiation to mature T and B lymphocytes after implantation of embryoid bodies into nude mice. Developmental Immunology, 4(2), 79–84.CrossRefGoogle Scholar
  29. 29.
    Wada, H., Kojo, S., Kusama, C., Okamoto, N., Sato, Y., Ishizuka, B., et al. (2011). Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells. International Immunology, 23(1), 65–74. doi: 10.1093/intimm/dxq458.CrossRefGoogle Scholar
  30. 30.
    Carpenter, L., Malladi, R., Yang, C. T., French, A., Pilkington, K. J., Forsey, R. W., et al. (2011). Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood, 117(15), 4008–4011. doi: 10.1182/blood-2010-08-299941.CrossRefGoogle Scholar
  31. 31.
    Goodridge, H. S. (2014). Induced pluripotent stem cell-derived myeloid phagocytes: Disease modeling and therapeutic applications. Drug Discovery Today, 19(6), 774–780. doi: 10.1016/j.drudis.2014.01.004.CrossRefGoogle Scholar
  32. 32.
    Morishima, T., Watanabe, K., Niwa, A., Fujino, H., Matsubara, H., Adachi, S., et al. (2011). Neutrophil differentiation from human-induced pluripotent stem cells. Journal of Cellular Physiology, 226(5), 1283–1291. doi: 10.1002/jcp.22456.CrossRefGoogle Scholar
  33. 33.
    Choi, K. D., Vodyanik, M. A., & Slukvin, I. I. (2009). Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived linCD34+CD43+CD45+ progenitors. Journal of Clinical Investigation, 119(9), 2818–2829. doi: 10.1172/JCI38591.CrossRefGoogle Scholar
  34. 34.
    Kambal, A., Mitchell, G., Cary, W., Gruenloh, W., Jung, Y., Kalomoiris, S., et al. (2011). Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. Molecular Therapy, 19(3), 584–593. doi: 10.1038/mt.2010.269.CrossRefGoogle Scholar
  35. 35.
    van Wilgenburg, B., Browne, C., Vowles, J., & Cowley, S. A. (2013). Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS ONE, 8(8), e71098. doi: 10.1371/journal.pone.0071098.CrossRefGoogle Scholar
  36. 36.
    Zhan, X., Dravid, G., Ye, Z., Hammond, H., Shamblott, M., Gearhart, J., et al. (2004). Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet, 364(9429), 163–171. doi: 10.1016/S0140-6736(04)16629-4.CrossRefGoogle Scholar
  37. 37.
    Su, Z., Frye, C., Bae, K. M., Kelley, V., & Vieweg, J. (2008). Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clinical Cancer Research, 14(19), 6207–6217. doi: 10.1158/1078-0432.CCR-08-0309.CrossRefGoogle Scholar
  38. 38.
    Tseng, S. Y., Nishimoto, K. P., Silk, K. M., Majumdar, A. S., Dawes, G. N., Waldmann, H., et al. (2009). Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regenerative Medicine, 4(4), 513–526. doi: 10.2217/rme.09.25.CrossRefGoogle Scholar
  39. 39.
    Nishimoto, K. P., Tseng, S. Y., Lebkowski, J. S., & Reddy, A. (2011). Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency. Regenerative Medicine, 6(3), 303–318. doi: 10.2217/rme.11.19.CrossRefGoogle Scholar
  40. 40.
    Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., et al. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 102(3), 906–915. doi: 10.1182/blood-2003-03-0832.CrossRefGoogle Scholar
  41. 41.
    Kobari, L., Yates, F., Oudrhiri, N., Francina, A., Kiger, L., Mazurier, C., et al. (2012). Human induced pluripotent stem cells can reach complete terminal maturation: In vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica, 97(12), 1795–1803. doi: 10.3324/haematol.2011.055566.CrossRefGoogle Scholar
  42. 42.
    Mazurier, C., Douay, L., & Lapillonne, H. (2011). Red blood cells from induced pluripotent stem cells: Hurdles and developments. Current Opinion in Hematology, 18(4), 249–253. doi: 10.1097/MOH.0b013e3283476129.CrossRefGoogle Scholar
  43. 43.
    Lu, S. J., Feng, Q., Ivanova, Y., Luo, C., Li, T., Li, F., et al. (2007). Recombinant HoxB4 fusion proteins enhance hematopoietic differentiation of human embryonic stem cells. Stem Cells Development, 16(4), 547–559. doi: 10.1089/scd.2007.0002.CrossRefGoogle Scholar
  44. 44.
    Sun, S., Jackson, C. W., & Ravid, K. (2000). MAP kinase localizes to the platelet-yielding demarcation membrane system in megakaryocytes. Blood, 95(4), 1511.Google Scholar
  45. 45.
    Mahaut-Smith, M. P., Thomas, D., Higham, A. B., Usher-Smith, J. A., Hussain, J. F., Martinez-Pinna, J., et al. (2003). Properties of the demarcation membrane system in living rat megakaryocytes. Biophysical Journal, 84(4), 2646–2654. doi: 10.1016/S0006-3495(03)75070-X.CrossRefGoogle Scholar
  46. 46.
    Eckly, A., Heijnen, H., Pertuy, F., Geerts, W., Proamer, F., Rinckel, J. Y., et al. (2014). Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood, 123(6), 921–930. doi: 10.1182/blood-2013-03-492330.CrossRefGoogle Scholar
  47. 47.
    Lim, C. K., Hwang, W. Y., Aw, S. E., & Sun, L. (2008). Study of gene expression profile during cord blood-associated megakaryopoiesis. European Journal of Haematology, 81(3), 196–208. doi: 10.1111/j.1600-0609.2008.01104.x.CrossRefGoogle Scholar
  48. 48.
    Briggs, M., Adams, J. A., Brereton, M. L., Burgess, R., Hyde, K., Lenehan, H., et al. (2001). Comparison of megakaryopoiesis in vitro of paired peripheral blood progenitor cells and bone marrow harvested during remission in patients with acute myeloid leukaemia. British Journal of Haematology, 115(3), 563–568.CrossRefGoogle Scholar
  49. 49.
    Miyazaki, R., Ogata, H., Iguchi, T., Sogo, S., Kushida, T., Ito, T., et al. (2000). Comparative analyses of megakaryocytes derived from cord blood and bone marrow. British Journal of Haematology, 108(3), 602–609.CrossRefGoogle Scholar
  50. 50.
    Catani, L., Gugliotta, L., Campanini, E., Mangianti, S., Gibellini, D., Baravelli, S., et al. (1998). Megakaryocyte progenitors derived from bone marrow or G-CSF-mobilized peripheral blood CD34 cells show a distinct phenotype and responsiveness to interleukin-3 (IL-3) and PEG-recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF). British Journal of Haematology, 100(1), 207–218.CrossRefGoogle Scholar
  51. 51.
    Gaur, M., Kamata, T., Wang, S., Moran, B., Shattil, S. J., & Leavitt, A. D. (2006). Megakaryocytes derived from human embryonic stem cells: A genetically tractable system to study megakaryocytopoiesis and integrin function. Journal of Thrombosis and Haemostasis, 4(2), 436–442. doi: 10.1111/j.1538-7836.2006.01744.x.CrossRefGoogle Scholar
  52. 52.
    Takayama, N., & Eto, K. (2012). In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced pluripotent stem cells. Methods in Molecular Biology, 788, 205–217. doi: 10.1007/978-1-61779-307-3_15.CrossRefGoogle Scholar
  53. 53.
    Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., et al. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509. doi: 10.1038/nmeth1041.CrossRefGoogle Scholar
  54. 54.
    Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386. doi: 10.1016/j.cell.2010.07.002.CrossRefGoogle Scholar
  55. 55.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041. doi: 10.1038/nature08797.CrossRefGoogle Scholar
  56. 56.
    Yang, R., Zheng, Y., Li, L., Liu, S., Burrows, M., Wei, Z., et al. (2014). Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nature Communications, 5, 5807. doi: 10.1038/ncomms6807.CrossRefGoogle Scholar
  57. 57.
    Yamamoto, K., Kishida, T., Sato, Y., Nishioka, K., Ejima, A., Fujiwara, H., et al. (2015). Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 6152–6157. doi: 10.1073/pnas.1420713112.CrossRefGoogle Scholar
  58. 58.
    Zhang, K., Liu, G. H., Yi, F., Montserrat, N., Hishida, T., Esteban, C. R., et al. (2014). Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell, 5(1), 48–58. doi: 10.1007/s13238-013-0011-2.CrossRefGoogle Scholar
  59. 59.
    Efe, J. A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13(3), 215–222. doi: 10.1038/ncb2164.CrossRefGoogle Scholar
  60. 60.
    Kim, J., Efe, J. A., Zhu, S., Talantova, M., Yuan, X., Wang, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7838–7843. doi: 10.1073/pnas.1103113108.CrossRefGoogle Scholar
  61. 61.
    Rafii, S., Kloss, C. C., Butler, J. M., Ginsberg, M., Gars, E., Lis, R., et al. (2013). Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood, 121(5), 770–780. doi: 10.1182/blood-2012-07-444208.CrossRefGoogle Scholar
  62. 62.
    Sandler, V. M., Lis, R., Liu, Y., Kedem, A., James, D., Elemento, O., et al. (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511(7509), 312–318. doi: 10.1038/nature13547.CrossRefGoogle Scholar
  63. 63.
    Hu, W., Qiu, B., Guan, W., Wang, Q., Wang, M., Li, W., et al. (2015). Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17(2), 204–212. doi: 10.1016/j.stem.2015.07.006.CrossRefGoogle Scholar
  64. 64.
    Victor, M. B., Richner, M., Hermanstyne, T. O., Ransdell, J. L., Sobieski, C., Deng, P. Y., et al. (2014). Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron, 84(2), 311–323. doi: 10.1016/j.neuron.2014.10.016.CrossRefGoogle Scholar
  65. 65.
    Woods, N. B., Parker, A. S., Moraghebi, R., Lutz, M. K., Firth, A. L., Brennand, K. J., et al. (2011). Brief report: Efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines. Stem Cells, 29(7), 1158–1164.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Zhao Cheng
    • 1
  • Hongling Peng
    • 1
  • Rong Zhang
    • 2
  • Guangsen Zhang
    • 1
  1. 1.Department of Hematology, Institute of Molecular Hematology, The Second Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial CenterNational Cancer CenterKashiwaJapan

Personalised recommendations