Skip to main content
Log in

An Explicit Method for Analysis of Three-Dimensional Linear and Angular Velocity of a Joint, with Specific Application to the Knee Joint

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Velocity analysis in a joint is a major area of interest in research involving the dynamics of joints and in diagnosing and monitoring the progression of some diseases such as osteoarthritis. In this study, we provide a general analytical method to determine three-dimensional linear and angular velocity of a joint. The formulations presented are explicit, having neither the limitations of numerical methods nor the necessity of simplifying the joint to a hinge or spherical (ball and socket) joint. In addition to conventional analysis of joint kinematics where only the position and orientation of the joint is considered, velocity analysis provides more information regarding the dynamics of the joint. The methodology presented is a systematic approach and can be used for various joints. As an example, a formulation to measure the velocity of the tibiofemoral component of a knee joint is presented, in terms of clinical rotations by using a joint coordinate system. The method is used to examine the in vivo velocity formulations in five ovine stifle (knee) joints by using joint kinematic data measured with an instrumented spatial linkage. The results demonstrate that the classical hinge model of the knee joint cannot predict the exact three-dimensional velocity of the knee joint through the gait cycle for all subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Granata, K. P., Abel, M. F., & Damiano, D. L. (2000). Joint angular velocity in spastic gait and the influence of muscle-tendon lengthening. The Journal of Bone and Joint Surgery, 82(2), 174–186. doi:10.1016/j.bbi.2008.05.010.

    Article  Google Scholar 

  2. Krawetz, P., & Nance, P. (1996). Gait analysis of spinal cord injured subjects: Effects of injury level and spasticity. Archives of Physical Medicine and Rehabilitation, 77(7), 635–638. doi:10.1016/S0003-9993(96)90000-3.

    Article  Google Scholar 

  3. Beveridge, J. E., Heard, B. J., Shrive, N. G., & Frank, C. B. (2013). Tibiofemoral centroid velocity correlates more consistently with cartilage damage than does contact path length in two ovine models of stifle injury. Journal of Orthopaedic Research, 31(11), 1745–1756. doi:10.1002/jor.22429.

    Google Scholar 

  4. Anderst, W. J., & Tashman, S. (2009). The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. Journal of Orthopaedic Research, 27(1), 71–77. doi:10.1002/jor.20702.

    Article  Google Scholar 

  5. Barton, K. I., Shekarforoush, M., Heard, B. J., Sevick, J. L., Vakil, P., Atarod, M., et al. (2016). Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. Journal of Orthopaedic Research. doi:10.1002/jor.23322.

    Google Scholar 

  6. Andriacchi, T. P., & Alexander, E. J. (2000). Studies of human locomotion: Past, present and future. Journal of Biomechanics, 33(10), 1217–1224. doi:10.1016/S0021-9290(00)00061-0.

    Article  Google Scholar 

  7. Schuler, N. B., Bey, M. J., Shearn, J. T., & Butler, D. L. (2005). Evaluation of an electromagnetic position tracking device for measuring in vivo, dynamic joint kinematics. Journal of Biomechanics, 38(10), 2113–2117. doi:10.1016/j.jbiomech.2004.09.015.

    Article  Google Scholar 

  8. Andriacchi, T. P., Briant, P. L., Bevill, S. L., & Koo, S. (2006). Rotational changes at the knee after ACL injury cause cartilage thinning. Clinical Orthopaedics and Related Research, 442(442), 39–44. doi:10.1097/01.blo.0000197079.26600.09.

    Article  Google Scholar 

  9. Huang, S. C., Wei, I. P., Chien, H. L., Wang, T. M., Liu, Y. H., Chen, H. L., et al. (2008). Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis. Medical Engineering & Physics, 30(8), 997–1003. doi:10.1016/j.medengphy.2008.02.006.

    Article  Google Scholar 

  10. Wang, T. M., Yen, H. C., Lu, T. W., Chen, H. L., Chang, C. F., Liu, Y. H., et al. (2009). Bilateral knee osteoarthritis does not affect inter-joint coordination in older adults with gait deviations during obstacle-crossing. Journal of Biomechanics, 42(14), 2349–2356. doi:10.1016/j.jbiomech.2009.06.029.

    Article  Google Scholar 

  11. Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Bio-Medical Engineering, 44(3), 136–147. doi:10.1109/10.554760.

    Article  Google Scholar 

  12. Zeng, H., & Zhao, Y. (2011). Sensing movement: Microsensors for body motion measurement. Sensors. doi:10.3390/s110100638.

    Google Scholar 

  13. Khan, H., Walker, P. S., Zuckerman, J. D., Slover, J., Jaffe, F., Karia, R. J., et al. (2013). The potential of accelerometers in the evaluation of stability of total knee arthroplasty. Journal of Arthroplasty, 28(3), 459–462. doi:10.1016/j.arth.2012.07.025.

    Article  Google Scholar 

  14. Ayrulu-Erdem, B., & Barshan, B. (2011). Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals. Sensors, 11(2), 1721–1743. doi:10.3390/s110201721.

    Article  Google Scholar 

  15. Catalfamo, P., Ghoussayni, S., & Ewins, D. (2010). Gait event detection on level ground and incline walking using a rate gyroscope. Sensors, 10(6), 5683–5702. doi:10.3390/s100605683.

    Article  Google Scholar 

  16. Tunçel, O., Altun, K., & Barshan, B. (2009). Classifying human leg motions with uniaxial piezoelectric gyroscopes. Sensors, 9(11), 8508–8546. doi:10.3390/s91108508.

    Article  Google Scholar 

  17. Behnam, A. J., Herzka, D. A., & Sheehan, F. T. (2011). Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. Journal of Biomechanics, 44(1), 193–197. doi:10.1016/j.jbiomech.2010.08.029.

    Article  Google Scholar 

  18. Li, G., Park, S. E., DeFrate, L. E., Schutzer, M. E., Ji, L., Gill, T. J., et al. (2005). The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clinical Biomechanics, 20(7), 736–744. doi:10.1016/j.clinbiomech.2005.04.001.

    Article  Google Scholar 

  19. DeFrate, L. E., Gill, T. J., & Li, G. (2004). In vivo function of the posterior cruciate ligament during weightbearing knee flexion. The American Journal of Sports Medicine, 32, 1923–1928. doi:10.1177/0363546504264896.

    Article  Google Scholar 

  20. Defrate, L. E., Sun, H., Gill, T. J., Rubash, H. E., & Li, G. (2004). In vivo tibiofemoral contact analysis using 3D MRI-based knee models. Journal of Biomechanics, 37(10), 1499–1504. doi:10.1016/j.jbiomech.2004.01.012.

    Article  Google Scholar 

  21. Chen, C. H., Li, J. S., Hosseini, A., Gadikota, H. R., Gill, T. J., & Li, G. (2012). Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait and Posture, 35(3), 467–471. doi:10.1016/j.gaitpost.2011.11.009.

    Article  Google Scholar 

  22. Defrate, L. E., Papannagari, R., Gill, T. J., Moses, J. M., Pathare, N. P., & Li, G. (2006). The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: An in vivo imaging analysis. The American Journal of Sports Medicine, 34(8), 1240–1246. doi:10.1177/0363546506287299.

    Article  Google Scholar 

  23. Miranda, D. L., Rainbow, M. J., Crisco, J. J., & Fleming, B. C. (2013). Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver. Journal of Biomechanics, 46(3), 567–573. doi:10.1016/j.jbiomech.2012.09.023.

    Article  Google Scholar 

  24. Gatti, G., Mundo, D., & Danieli, G. (2010). Kinematic analysis and performance evaluation of 6R instrumented spatial linkages. Transactions of the Canadian Society for Mechanical Engineering, 34(1), 57–73.

    Google Scholar 

  25. Gatti, G. (2012). On the estimate of the two dominant axes of the knee using an instrumented spatial linkage. Journal of Applied Biomechanics, 28(2), 200–209. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21904008.

  26. Bonny, D. P., Hull, M. L., & Howell, S. M. (2013). Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: A computational analysis. Journal of Biomechanical Engineering, 135(3), 31003. doi:10.1115/1.4023135.

    Article  Google Scholar 

  27. Sholukha, V., Salvia, P., Hilal, I., Feipel, V., Rooze, M., & Jan, S. V. S. (2004). Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanical applications. A practical approach. Medical Engineering & Physics, 26(3), 251–260. doi:10.1016/j.medengphy.2003.10.002.

    Article  Google Scholar 

  28. Atarod, M., Rosvold, J. M., Frank, C. B., & Shrive, N. G. (2014). A novel testing platform for assessing knee joint mechanics: A parallel robotic system combined with an instrumented spatial linkage. Annals of Biomedical Engineering, 42(5), 1121–1132. doi:10.1007/s10439-014-0985-9.

    Article  Google Scholar 

  29. Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics (Bristol, Avon), 22(2), 131–154. doi:10.1016/j.clinbiomech.2006.09.005.

    Article  Google Scholar 

  30. Seel, T., Raisch, J., & Schauer, T. (2014). IMU-based joint angle measurement for gait analysis. Sensors (Basel, Switzerland), 14(4), 6891–6909. doi:10.3390/s140406891.

    Article  Google Scholar 

  31. Tognetti, A., Lorussi, F., Carbonaro, N., & de Rossi, D. (2015). Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors (Basel, Switzerland), 15(11), 28435–28455. doi:10.3390/s151128435.

    Article  Google Scholar 

  32. Terrier, A., Aeberhard, M., Michellod, Y., Mullhaupt, P., Gillet, D., Farron, A., et al. (2010). A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Medical Engineering & Physics, 32(9), 1050–1056. doi:10.1016/j.medengphy.2010.07.006.

    Article  Google Scholar 

  33. Lu, T. W., & O’Connor, J. J. (1999). Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics, 32(2), 129–134. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10052917.

  34. Andersen, M. S., Benoit, D. L., Damsgaard, M., Ramsey, D. K., & Rasmussen, J. (2010). Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. Journal of Biomechanics, 43(2), 268–273. doi:10.1016/j.jbiomech.2009.08.034.

    Article  Google Scholar 

  35. Charlton, I. W., Tate, P., Smyth, P., & Roren, L. (2004). Repeatability of an optimised lower body model. Gait & Posture, 20(2), 213–221. doi:10.1016/j.gaitpost.2003.09.004.

    Article  Google Scholar 

  36. Preuschl, E., Hassmann, M., & Baca, A. (2016). A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo. Journal of Sports Science & Medicine, 15(1), 92–101. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26957931.

  37. Lebiedowska, M. K., Sikdar, S., Eranki, A., & Garmirian, L. (2011). Knee joint angular velocities and accelerations during the patellar tendon jerk. Journal of Neuroscience Methods, 198(2), 255–259. doi:10.1016/j.jneumeth.2011.04.018.

    Article  Google Scholar 

  38. Grood, E. S., & Suntay, W. J. (1983). A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. Journal of Biomechanical Engineering, 105(2), 136–144. doi:10.1115/1.3138397.

    Article  Google Scholar 

  39. Levangie, P. K., & Cynthia, C. N. (2011). Joint structure and function: A comprehensive analysis (5th ed.). Philadelphia: F.A Davis Co.

    Google Scholar 

  40. Verstraete, M. C., & Soutas-Little, R. W. (1990). A method for computing the three-dimensional angular velocity and acceleration of a body segment from three-dimensional position data. Journal of Biomechanical Engineering, 112(2), 114. doi:10.1115/1.2891161.

    Article  Google Scholar 

  41. Mulavara, A. P., Verstraete, M. C., & Bloomberg, J. J. (2002). Modulation of head movement control in humans during treadmill walking. Gait & Posture, 16(3), 271–282. doi:10.1016/S0966-6362(02)00016-4.

    Article  Google Scholar 

  42. Miller, C. A., & Verstraete, M. C. (1999). A mechanical energy analysis of gait initiation. Gait & Posture, 9(3), 158–166. doi:10.1016/S0966-6362(99)00008-9.

    Article  Google Scholar 

  43. Howard, R. A., Rosvold, J. M., Darcy, S. P., Corr, D. T., Shrive, N. G., Tapper, J. E., et al. (2007). Reproduction of in vivo motion using a parallel robot. Journal of Biomechanical Engineering, 129(5), 743–749. doi:10.1115/1.2768983.

    Article  Google Scholar 

  44. Rosvold, J. M., Atarod, M., Frank, C. B., & Shrive, N. G. (2016). An instrumented spatial linkage for measuring knee joint kinematics. The Knee, 23(1), 43–48. doi:10.1016/j.knee.2015.09.009.

    Article  Google Scholar 

  45. Zhuang, H., Roth, Z. S., & Hamano, F. (1992). A complete and parametrically continuous kinematic model for robot manipulators. IEEE Transactions on Robotics and Automation, 8(4), 451–463. doi:10.1109/70.149944.

    Article  Google Scholar 

  46. Kotulski, Z. A., & Szczepinski, W. (2010). Error analysis with applications in engineering (Vol. 169). Dordrecht: Springer. doi:10.1007/978-90-481-3570-7.

    MATH  Google Scholar 

  47. Kessler, M. A., Behrend, H., Henz, S., Stutz, G., Rukavina, A., & Kuster, M. S. (2008). Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 16(5), 442–448. doi:10.1007/s00167-008-0498-x.

    Article  Google Scholar 

  48. Frobell, R. B., Roos, E. M., Roos, H. P., Ranstam, J., & Lohmander, L. S. (2010). A randomized trial of treatment for acute anterior cruciate ligament tears. The New England Journal of Medicine, 363(4), 331–342. doi:10.1056/NEJMoa0907797.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, The Arthritis Society, the Osteoarthritis Team of Alberta Innovates Health Solutions, and the University of Calgary. The technical support of Leslie Jacques and Yamini Achari was much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shekarforoush.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose regarding the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekarforoush, M., Barton, K.I., Atarod, M. et al. An Explicit Method for Analysis of Three-Dimensional Linear and Angular Velocity of a Joint, with Specific Application to the Knee Joint. J. Med. Biol. Eng. 38, 273–283 (2018). https://doi.org/10.1007/s40846-017-0298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0298-1

Keywords

Navigation