Journal of Medical and Biological Engineering

, Volume 38, Issue 2, pp 261–272 | Cite as

Multimodal Retrieval Framework for Brain Volumes in 3D MR Volumes

Original Article

Abstract

The paper presents retrieval framework for extracting similar 3D tumor volumes in magnetic resonance brain volumes in response to a query tumor volume. Similar volumes correspond to closeness in spatial location of the brain structures. Query slice pertains to a new tumor volume of a patient and the output slices belong to the tumor volumes related to previous case histories stored in the database. The framework could be of immense help to the medical practitioners. It might prove to be a useful diagnostic aid for the medical expert and also serve as a teaching aid for researchers.

Keywords

Seed Key slice Tumor plot Brain volumes 

Notes

Acknowledgements

The authors acknowledge the research facilities provided by Gautama Buddha University. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the manuscript greatly.

References

  1. 1.
    Muda, S., & Mokji, M. (2011). Brain lesion segmentation from diffusion weighted MRI based on adaptive thresholding and gray level co-occurrence matrix. Journal of Telecommunication Electronic and Computer Engineering, 3(2), 1–13.Google Scholar
  2. 2.
    Cha, S. (2006). Review article: Update on brain tumor imaging: From anatomy to physiology. Journal of Neuro-radiology, 27, 475–487.Google Scholar
  3. 3.
    Jimenez-Alaniz, J. R., Medina-Banuelos, V., & Yanez-Suarez, O. (2006). Data driven brain MRI segmentation supported on edge confidence and a priori tissue information. IEEE Transactions on Medical Imaging, 25(1), 74–83.CrossRefGoogle Scholar
  4. 4.
    Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, 31, 1426–1438.CrossRefGoogle Scholar
  5. 5.
    Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.CrossRefGoogle Scholar
  6. 6.
    Harris, C., & Stephens, M. A. (1988). Combined corner and edge detector. In Proceedings of 4th alvey vision conference (pp. 147–151).Google Scholar
  7. 7.
    Fan, J., Yau, D. K. Y., Elmagarmid, A. K., & Aref, W. G. (2001). Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Transactions on Image Processing, 10(10), 1454–1466.CrossRefMATHGoogle Scholar
  8. 8.
    Moon, N., Bullitt, E., Leemput, K. V., & Gerig, G. (2002). Model based brain and tumor segmentation. In International conference on pattern recognition (ICPR) (pp. 528–531).Google Scholar
  9. 9.
    Prastawa, M., Bullitt, E., Moon, N., Leemput, K. V., & Gerig, G. (2003). Automatic brain tumor segmentation by subject specific modification of atlas priors. Academic Radiology, 10, 1341–1348.CrossRefGoogle Scholar
  10. 10.
    Mancas, M., & Gosselin, B. (2004). Toward an automatic tumor segmentation using iterative watersheds. In Medical imaging 2004: Image processing (SPIE2004) (Vol. 5370, pp. 1598–1608).Google Scholar
  11. 11.
    Zhou, J., Chan, K. L., Chong, V. F. H., & Krishnan, S. M. (2005). Extraction of brain tumor from MR images using one-class support vector machine. In IEEE conference on engineering in medicine and biology (pp. 6411–6414).Google Scholar
  12. 12.
    Warfield, S. K., Kaus, M., Jolesz, F. A., & Kikinis, R. (2000). Adaptive, template moderated, spatially varying statistical classification. Medical Image Analysis, 4(1), 43–55.CrossRefGoogle Scholar
  13. 13.
    Gering, D. T. (2003). Recognizing deviations from normalcy for brain tumor segmentation. PhD thesis, Massachusetts Institute of Technology.Google Scholar
  14. 14.
    Popuri, K., Cobzas, D., Murtha, A., & Jägersand, M. (2012). 3D variational brain tumor segmentation using dirichlet priors on a clustered feature set. International Journal of Computer Assisted Radiology and Surgery, 7(4), 493–506.CrossRefGoogle Scholar
  15. 15.
    De Nunzio, G., Pastore, G., Donativi, M., Castellano, A., & Falini, A. (2011). A CAD system for cerebral glioma based on texture features in DT-MR images. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 648, 100–102.CrossRefGoogle Scholar
  16. 16.
    Uher, V., & Burget, R. (2012). Automatic 3D segmentation of human brain images using data-mining technique. In 35th international conference on telecommunications and signal processing (pp. 578–580).Google Scholar
  17. 17.
    Gooya, A., Pohl, K., Bilello, M., Biros, G., & Davatzikos, C. (2011). Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In Medical image computing and computer assisted intervention—MICCAI (pp. 532–540).Google Scholar
  18. 18.
    Gooya, A., Pohl, K., Bilello, M., Cirillo, L., Biros, G., Melhem, E., et al. (2012). GLISTR: Glioma image segmentation and registration. IEEE Transactions on Medical Imaging, 31(10), 1941–1954.CrossRefGoogle Scholar
  19. 19.
    Diaz, I., Boulanger, P., Greiner, R., Hoehn, B., Rowe, L., & Murtha, A. (2013). An automatic brain tumor segmentation tool. In Conference proceedings IEEE Eng Med Biol Soc. (pp. 3339–3342).Google Scholar
  20. 20.
    Saha, B. N., Ray, N., Greiner, R., Murtha, A., & Zhang, H. (2012). Quick detection of brain tumors and edemas: A bounding box method using symmetry. Computer Medical Imaging Graphics, 36(2), 95–107.CrossRefGoogle Scholar
  21. 21.
    Vezhnevets, V., & Konouchine, V. (2005). Growcut-interactive multi-label N-D image segmentation by cellular automata. In Proceedings of graphicon (pp. 150–156).Google Scholar
  22. 22.
  23. 23.
    The Cancer Imaging Archive (TCIA). http://cancerimagingarchive.net/.
  24. 24.
    BRaTS: Multimodal Brain Tumor Segmentation Challenge MICCAI 2012. http://www.imm.dtu.dk/projects/BRATS2012.

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Mangipudi ParthaSarathi
    • 1
  • Mohammad Ahmad Ansari
    • 2
  1. 1.Department of Electronics and Communication EngineeringAmity UniversityNoidaIndia
  2. 2.Department of Electrical EngineeringGautam Buddha UniversityGreater NoidaIndia

Personalised recommendations