Journal of Medical and Biological Engineering

, Volume 37, Issue 5, pp 780–789 | Cite as

Pro-arrhythmogenic Effects of the V141M KCNQ1 Mutation in Short QT Syndrome and Its Potential Therapeutic Targets: Insights from Modeling

  • Hsiang-Chun Lee
  • Yoram Rudy
  • Hongwu Liang
  • Chih-Chieh Chen
  • Ching-Hsing Luo
  • Sheng-Hsiung Sheu
  • Jianmin Cui
Original Article

Abstract

Gain-of-function mutations in the pore-forming subunit of IKs channels, KCNQ1, lead to short QT syndrome (SQTS) and lethal arrhythmias. However, how mutant IKs channels cause SQTS and the possibility of IKs-specific pharmacological treatment remain unclear. V141M KCNQ1 is a SQTS associated mutation. We studied its effect on IKs gating properties and changes in the action potentials (AP) of human ventricular myocytes. Xenopus oocytes were used to study the gating mechanisms of expressed V141M KCNQ1/KCNE1 channels. Computational models were used to simulate human APs in endocardial, mid-myocardial, and epicardial ventricular myocytes with and without β-adrenergic stimulation. V141M KCNQ1 caused a gain-of-function in IKs characterized by increased current density, faster activation, and slower deactivation leading to IKs accumulation. V141M KCNQ1 also caused a leftward shift of the conductance-voltage curve compared to wild type (WT) IKs (V1/2 = 33.6 ± 4.0 mV for WT, and 24.0 ± 1.3 mV for heterozygous V141M). A Markov model of heterozygous V141M mutant IKs was developed and incorporated into the O’Hara–Rudy model. Compared to the WT, AP simulations demonstrated marked rate-dependent shortening of AP duration (APD) for V141M, predicting a SQTS phenotype. Transmural electrical heterogeneity was enhanced in heterozygous V141M AP simulations, especially under β-adrenergic stimulation. Computational simulations identified specific IK1 blockade as a beneficial pharmacologic target for reducing the transmural APD heterogeneity associated with V141M KCNQ1 mutation. V141M KCNQ1 mutation shortens ventricular APs and enhances transmural APD heterogeneity under β-adrenergic stimulation. Computational simulations identified IK1 blockers as a potential antiarrhythmic drug of choice for SQTS.

Keywords

Arrhythmia Anti-arrhythmic IKs KCNQ1 Short QT syndrome 

Notes

Acknowledgements

We thank Dr. Jingyi Shi and Kelli Delaloye for KCNQ1 and KCNE1 subcloning. We thank Dr. Guohui Zhang for technical help with data analysis. We also thank Dr. Po-Yuan Chen for technical help with the computational simulation. The authors also thank the Statistical Analysis Laboratory, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University. This study was funded by Taiwan National Science Council Grant NSC 102-2314-B-037 -041 and KMUH97-7G31 (to HC Lee), NIH–NHLBI Grants R01-HL-049054 and R01-HL-033343 (to Y. Rudy), and NIH Grants R01-HL70393 and R01-NS060706 (to J. Cui).

Compliance with Ethical Standards

Conflict of interest

None.

Supplementary material

40846_2017_257_MOESM1_ESM.pdf (123 kb)
Supplementary material 1 (PDF 123 kb)

References

  1. 1.
    Gussak, I., Brugada, P., Brugada, J., Wright, R. S., Kopecky, S. L., Chaitman, B. R., et al. (2000). Idiopathic short QT interval: A new clinical syndrome? Cardiology, 94(2), 99–102.CrossRefGoogle Scholar
  2. 2.
    Bjerregaard, P., & Gussak, I. (2005). Short QT syndrome: Mechanisms, diagnosis and treatment. Nature Clinical Practice Cardiovascular Medicine, 2(2), 84–87. doi: 10.1038/ncpcardio0097.CrossRefGoogle Scholar
  3. 3.
    Schimpf, R., Wolpert, C., Gaita, F., Giustetto, C., & Borggrefe, M. (2005). Short QT syndrome. Cardiovascular Research, 67(3), 357–366. doi: 10.1016/j.cardiores.2005.03.026.CrossRefGoogle Scholar
  4. 4.
    Villafañe, J., Atallah, J., Gollob, M. H., Maury, P., Wolpert, C., Gebauer, R., et al. (2013). Long-term follow-up of a pediatric cohort with short QT syndrome. Journal of the American College of Cardiology, 61(11), 1183–1191. doi: 10.1016/j.jacc.2012.12.025.CrossRefGoogle Scholar
  5. 5.
    Brugada, R., Hong, K., Dumaine, R., Cordeiro, J., Gaita, F., Borggrefe, M., et al. (2004). Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation, 109(1), 30–35. doi: 10.1161/01.cir.0000109482.92774.3a.CrossRefGoogle Scholar
  6. 6.
    Hong, K., Bjerregaard, P., Gussak, I., & Brugada, R. (2005). Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. Journal of Cardiovascular Electrophysiology, 16(4), 394–396. doi: 10.1046/j.1540-8167.2005.40621.x.CrossRefGoogle Scholar
  7. 7.
    Priori, S. G., Pandit, S. V., Rivolta, I., Berenfeld, O., Ronchetti, E., Dhamoon, A., et al. (2005). A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circulation Research, 96(7), 800–807. doi: 10.1161/01.RES.0000162101.76263.8c.CrossRefGoogle Scholar
  8. 8.
    Bellocq, C., van Ginneken, A. C., Bezzina, C. R., Alders, M., Escande, D., Mannens, M. M., et al. (2004). Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation, 109(20), 2394–2397. doi: 10.1161/01.cir.0000130409.72142.fe.CrossRefGoogle Scholar
  9. 9.
    Antzelevitch, C., Pollevick, G. D., Cordeiro, J. M., Casis, O., Sanguinetti, M. C., Aizawa, Y., et al. (2007). Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation, 115(4), 442–449. doi: 10.1161/circulationaha.106.668392.CrossRefGoogle Scholar
  10. 10.
    Templin, C., Ghadri, J. R., Rougier, J. S., Baumer, A., Kaplan, V., Albesa, M., et al. (2011). Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). European Heart Journal, 32(9), 1077–1088. doi: 10.1093/eurheartj/ehr076.CrossRefGoogle Scholar
  11. 11.
    Abriel, H., & Zaklyazminskaya, E. V. (2013). Cardiac channelopathies: Genetic and molecular mechanisms. Gene, 517(1), 1–11. doi: 10.1016/j.gene.2012.12.061.CrossRefGoogle Scholar
  12. 12.
    Hong, K., Piper, D. R., Diaz-Valdecantos, A., Brugada, J., Oliva, A., Burashnikov, E., et al. (2005). De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovascular Research, 68(3), 433–440. doi: 10.1016/j.cardiores.2005.06.023.CrossRefGoogle Scholar
  13. 13.
    Maltret, A., Wiener-Vacher, S., Denis, C., Extramiana, F., Morisseau-Durand, M. P., Fressart, V., et al. (2014). Type 2 short QT syndrome and vestibular dysfunction: Mirror of the Jervell and Lange-Nielsen syndrome? International Journal of Cardiology, 171(2), 291–293. doi: 10.1016/j.ijcard.2013.11.078.CrossRefGoogle Scholar
  14. 14.
    Wolpert, C., Schimpf, R., Giustetto, C., Antzelevitch, C., Cordeiro, J., Dumaine, R., et al. (2005). Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. Journal of Cardiovascular Electrophysiology, 16(1), 54–58. doi: 10.1046/j.1540-8167.2005.04470.x.CrossRefGoogle Scholar
  15. 15.
    Extramiana, F., & Antzelevitch, C. (2004). Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation, 110(24), 3661–3666. doi: 10.1161/01.CIR.0000143078.48699.0C.CrossRefGoogle Scholar
  16. 16.
    Anttonen, O., Vaananen, H., Junttila, J., Huikuri, H. V., & Viitasalo, M. (2008). Electrocardiographic transmural dispersion of repolarization in patients with inherited short QT syndrome. Annals of Noninvasive Electrocardiology, 13(3), 295–300. doi: 10.1111/j.1542-474X.2008.00234.x.CrossRefGoogle Scholar
  17. 17.
    Milberg, P., Tegelkamp, R., Osada, N., Schimpf, R., Wolpert, C., Breithardt, G., et al. (2007). Reduction of dispersion of repolarization and prolongation of postrepolarization refractoriness explain the antiarrhythmic effects of quinidine in a model of short QT syndrome. Journal of Cardiovascular Electrophysiology, 18(6), 658–664. doi: 10.1111/j.1540-8167.2007.00813.x.CrossRefGoogle Scholar
  18. 18.
    O’Hara, T., & Rudy, Y. (2012). Arrhythmia formation in subclinical (“silent”) long QT syndrome requires multiple insults: Quantitative mechanistic study using the KCNQ1 mutation Q357R as example. Heart Rhythm, 9(2), 275–282. doi: 10.1016/j.hrthm.2011.09.066.CrossRefGoogle Scholar
  19. 19.
    Lee, H. C., Rudy, Y., Po-Yuan, P., Sheu, S. H., Chang, J. G., & Cui, J. (2013). Modulation of KCNQ1 alternative splicing regulates cardiac IKs and action potential repolarization. Heart Rhythm, 10(8), 1220–1228. doi: 10.1016/j.hrthm.2013.04.014.CrossRefGoogle Scholar
  20. 20.
    O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Computational Biology, 7(5), e1002061.CrossRefGoogle Scholar
  21. 21.
    Heijman, J., Volders, P. G., Westra, R. L., & Rudy, Y. (2011). Local control of beta-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca(2+)-transient. Journal of Molecular and Cellular Cardiology, 50(5), 863–871. doi: 10.1016/j.yjmcc.2011.02.007.CrossRefGoogle Scholar
  22. 22.
    Sicouri, S., Moro, S., Litovsky, S., Elizari, M. V., & Antzelevitch, C. (1997). Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. Journal of Cardiovascular Electrophysiology, 8(11), 1269–1279.CrossRefGoogle Scholar
  23. 23.
    Benson, A. P., Aslanidi, O. V., Zhang, H., & Holden, A. V. (2008). The canine virtual ventricular wall: A platform for dissecting pharmacological effects on propagation and arrhythmogenesis. Progress in Biophysics and Molecular Biology, 96(1–3), 187–208. doi: 10.1016/j.pbiomolbio.2007.08.002.CrossRefGoogle Scholar
  24. 24.
    Wu, L., Guo, D., Li, H., Hackett, J., Yan, G.-X., Jiao, Z., et al. (2008). Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm, 5(12), 1726–1734. doi: 10.1016/j.hrthm.2008.09.008.CrossRefGoogle Scholar
  25. 25.
    Wu, M. H., Su, M. J., & Lue, H. C. (1994). Age-related quinidine effects on ionic currents of rabbit cardiac myocytes. Journal of Molecular and Cellular Cardiology, 26(9), 1167–1177. doi: 10.1006/jmcc.1994.1135.CrossRefGoogle Scholar
  26. 26.
    Hiraoka, M., Sawada, K., & Kawano, S. (1986). Effects of quinidine on plateau currents of guinea-pig ventricular myocytes. Journal of Molecular and Cellular Cardiology, 18(10), 1097–1106.CrossRefGoogle Scholar
  27. 27.
    Zhou, P., Yang, X., Li, C., Gao, Y., & Hu, D. (2010). Quinidine depresses the transmural electrical heterogeneity of transient outward potassium current of the right ventricular outflow tract free wall. Journal of Cardiovascular Disease Research, 1(1), 12–18. doi: 10.4103/0975-3583.59979.CrossRefGoogle Scholar
  28. 28.
    Patel, C., Yan, G.-X., & Antzelevitch, C. (2010). Short QT syndrome: From bench to bedside. Circulation: Arrhythmia and Electrophysiology, 3(4), 401–408. doi: 10.1161/circep.109.921056.Google Scholar
  29. 29.
    Yatani, A., Wakamori, M., Mikala, G., & Bahinski, A. (1993). Block of transient outward-type cloned cardiac K + channel currents by quinidine. Circulation Research, 73(2), 351–359.CrossRefGoogle Scholar
  30. 30.
    Kaufman, E. S. (2007). Quinidine in short QT syndrome: An old drug for a new disease. Journal of Cardiovascular Electrophysiology, 18(6), 665–666. doi: 10.1111/j.1540-8167.2007.00815.x.CrossRefGoogle Scholar
  31. 31.
    Zhang, H., Kharche, S., Holden, A. V., & Hancox, J. C. (2008). Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation—A simulation study. Progress in Biophysics and Molecular Biology, 96(1–3), 112–131. doi: 10.1016/j.pbiomolbio.2007.07.020.CrossRefGoogle Scholar
  32. 32.
    Porta, A., Girardengo, G., Bari, V., George, A. L., Jr., Brink, P. A., Goosen, A., et al. (2015). Autonomic control of heart rate and QT interval variability influences arrhythmic risk in long QT syndrome type 1. Journal of the American College of Cardiology, 65(4), 367–374. doi: 10.1016/j.jacc.2014.11.015.CrossRefGoogle Scholar
  33. 33.
    Larson, E. D., St. Clair, J. R., Sumner, W. A., Bannister, R. A., & Proenza, C. (2013). Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proceedings of the National Academy of Sciences, 110(44), 18011–18016. doi: 10.1073/pnas.1308477110.CrossRefGoogle Scholar
  34. 34.
    Gaita, F., Giustetto, C., Bianchi, F., Schimpf, R., Haissaguerre, M., Calo, L., et al. (2004). Short QT syndrome: Pharmacological treatment. Journal of the American College of Cardiology, 43(8), 1494–1499. doi: 10.1016/j.jacc.2004.02.034.CrossRefGoogle Scholar
  35. 35.
    Perdomo, J., Yan, F., Ahmadi, Z., Jiang, X. M., Stocker, R., & Chong, B. H. (2011). Quinine-induced thrombocytopenia: Drug-dependent GPIb/IX antibodies inhibit megakaryocyte and proplatelet production in vitro. Blood, 117(22), 5975–5986. doi: 10.1182/blood-2010-10-314310.CrossRefGoogle Scholar
  36. 36.
    Gima, K., & Rudy, Y. (2002). Ionic current basis of electrocardiographic waveforms: A model study. Circulation Research, 90(8), 889–896.CrossRefGoogle Scholar
  37. 37.
    Antzelevitch, C., Shimizu, W., Yan, G. X., Sicouri, S., Weissenburger, J., Nesterenko, V. V., et al. (1999). The M cell: Its contribution to the ECG and to normal and abnormal electrical function of the heart. Journal of Cardiovascular Electrophysiology, 10(8), 1124–1152.CrossRefGoogle Scholar
  38. 38.
    Rees, S. A., & Curtis, M. J. (1995). Further investigations into the mechanism of antifibrillatory action of the specific IK1 blocker, RP58866, assessed using the rat dual coronary perfusion model. Journal of Molecular and Cellular Cardiology, 27(12), 2595–2606. doi: 10.1006/jmcc.1995.0046.CrossRefGoogle Scholar
  39. 39.
    Rees, S. A., & Curtis, M. J. (1993). Specific IK1 blockade: A new antiarrhythmic mechanism? Effect of RP58866 on ventricular arrhythmias in rat, rabbit, and primate. Circulation, 87(6), 1979–1989.CrossRefGoogle Scholar
  40. 40.
    Sinnecker, D., Goedel, A., Laugwitz, K.-L., & Moretti, A. (2013). Induced pluripotent stem cell-derived cardiomyocytes: A versatile tool for arrhythmia research. Circulation Research, 112(6), 961–968. doi: 10.1161/circresaha.112.268623.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Hsiang-Chun Lee
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Yoram Rudy
    • 1
  • Hongwu Liang
    • 1
  • Chih-Chieh Chen
    • 6
  • Ching-Hsing Luo
    • 7
  • Sheng-Hsiung Sheu
    • 2
    • 3
    • 4
  • Jianmin Cui
    • 1
  1. 1.Cardiac Bioelectricity and Arrhythmia CenterWashington University in St. LouisSt. LouisUSA
  2. 2.Division of Cardiology, Department of Internal MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Center for Lipid BiosciencesKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
  5. 5.Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
  6. 6.Institute of Medical Science and Technology National Sun Yat-sen UniversityKaohsiungTaiwan
  7. 7.Department of Electric EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations