Measured PET Data Characterization with the Negative Binomial Distribution Model

  • Maria Filomena Santarelli
  • Vincenzo Positano
  • Luigi Landini
Original Article


Accurate statistical model of PET measurements is a prerequisite for a correct image reconstruction when using statistical image reconstruction algorithms, or when pre-filtering operations must be performed. Although radioactive decay follows a Poisson distribution, deviation from Poisson statistics occurs on projection data prior to reconstruction due to physical effects, measurement errors, correction of scatter and random coincidences. Modelling projection data can aid in understanding the statistical nature of the data in order to develop efficient processing methods and to reduce noise. This paper outlines the statistical behaviour of measured emission data evaluating the goodness of fit of the negative binomial (NB) distribution model to PET data for a wide range of emission activity values. An NB distribution model is characterized by the mean of the data and the dispersion parameter α that describes the deviation from Poisson statistics. Monte Carlo simulations were performed to evaluate: (a) the performances of the dispersion parameter α estimator, (b) the goodness of fit of the NB model for a wide range of activity values. We focused on the effect produced by correction for random and scatter events in the projection (sinogram) domain, due to their importance in quantitative analysis of PET data. The analysis developed herein allowed us to assess the accuracy of the NB distribution model to fit corrected sinogram data, and to evaluate the sensitivity of the dispersion parameter α to quantify deviation from Poisson statistics. By the sinogram ROI-based analysis, it was demonstrated that deviation on the measured data from Poisson statistics can be quantitatively characterized by the dispersion parameter α, in any noise conditions and corrections.


Positron emission tomography (PET) Negative binomial (NB) distribution Maximum likelihood (ML) estimation Sinograms Poisson statistic deviation 


  1. 1.
    Vardi, Y., Shepp, L. A., & Kaufman, L. (1985). A statistical model for positron emission tomography. Journal of the American Statistical Association, 80(389), 8–20.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1–38.MathSciNetMATHGoogle Scholar
  3. 3.
    Rockmore, A. J., & Macovski, A. (1976). A maximum likelihood approach to emission image reconstruction from projections. IEEE Transactions on Nuclear Science, 23, 1428–1432.CrossRefGoogle Scholar
  4. 4.
    Shepp, L. A., & Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging, 1(2), 113–122.CrossRefGoogle Scholar
  5. 5.
    Fessler, J. A. (1994). Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Transaction on Medical Imaging, 13(2), 290–300.CrossRefGoogle Scholar
  6. 6.
    Yu, D. F., & Fessler, J. A. (2002). Mean and variance of coincidence counting with deadtime. Nuclear Instruments and Methods in Physics Research A, 488, 362–374.CrossRefGoogle Scholar
  7. 7.
    Ahn, S., & Fessler, J. A. (2004). Emission image reconstruction for randoms-precorrected PET allowing negative sinogram values. IEEE Transactions on Medical Imaging, 23(5), 591–601.CrossRefGoogle Scholar
  8. 8.
    Yavuz, M., & Fessler, J. A. (1998). Statistical Tomographic Recon methods for randoms precorrected PET scans. Medical Imaging Analysis, 2, 369–378.CrossRefGoogle Scholar
  9. 9.
    Daube-Witherspoon, M. E., & Carson, R. E. (1991). Unified deadtime correction model for PET. IEEE Transactions on Medical Imaging, 10(3), 267–275.CrossRefGoogle Scholar
  10. 10.
    Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in nuclear medicine. Philadelphia: Elsevier Saunders.Google Scholar
  11. 11.
    Qi, J., & Huesman, R. H. (2005). Effect of errors in the system matrix on MAP image reconstruction. Physics in Medicine & Biology, 50(14), 3297–3312.CrossRefGoogle Scholar
  12. 12.
    Sauer, K., & Bouman, C. (1993). A local update strategy for iterative reconstruction from projections. IEEE Transaction on Signal Processing, 41, 534–548.CrossRefMATHGoogle Scholar
  13. 13.
    Comtat, C., Kinahan, P. E., Defrise, M., Michel, C., & Townsend, D. W. (1998). Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Transactions on Nuclear Science, 45(3), 1083–1089.CrossRefGoogle Scholar
  14. 14.
    Casey M. E. (2007). Point spread function reconstruction in PET. Siemens Medical Solutions USA.Google Scholar
  15. 15.
    Jian, Y., Planeta, B., & Carson, R. E. (2015). Evaluation of bias and variance in low-count OSEM list mode reconstruction. Physics in Medicine & Biology, 60, 15–29.CrossRefGoogle Scholar
  16. 16.
    Reilhac, A., Tomeï, S., Buvat, I., Michel, C., Keheren, F., & Costes, N. (2008). Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. Neuroimage, 39(1), 359–368.CrossRefGoogle Scholar
  17. 17.
    Walker, M. D., Asselin, M. C., Julyan, P. J., Feldmann, M., Talbot, P. S., Jones, T., et al. (2011). Bias in iterative reconstruction of low-statistics PET data: Benefits of a resolution model. Physics in Medicine & Biology, 56, 931–949.CrossRefGoogle Scholar
  18. 18.
    Luisier, F., Blu, T., & Unser, M. (2011). Image denoising in mixed Poisson-Gaussian noise. IEEE Transactions on Image Processing, 20(3), 696–708.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bouman, C. A., & Sauer, K. (1996). A unified approach to statistical tomography using coordinate descent optimization. IEEE Transaction on Image Processing, 5, 480–492.CrossRefGoogle Scholar
  20. 20.
    Murtagh, F., Stark, J. L., & Bijaoui, A. (1995). Image restoration with noise suppression using a multiresolution support. Astronomy and Astrophysics Supplement Series, 112, 179–189.Google Scholar
  21. 21.
    Brown, L. D., Cai, T. T., & Zhou, H. H. (2010). Non parametric regression in exponential families. The annals of statistics, 38(4), 2005–2046.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Clark, S. J., & Perry, J. N. (1989). Estimation of the negative binomial parameter K by maximum quasi-likelihood. Biometrics, 45, 309–316.CrossRefMATHGoogle Scholar
  23. 23.
    Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics, 46, 863–867.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Park, B. J. (2008). Adjustment for the maximum likelihood estimate of negative binomial dispersion parameter. Transportation Research Record: Journal of the Transportation Research Board, 2061, 9–19.CrossRefGoogle Scholar
  25. 25.
    Dai, H., Bao, Y., & Bao, M. (2013). Maximum likelihood estimate for the dispersion parameter of the negative binomial distribution. Statistics and Probability Letters, 83, 21–27.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lloyd-Smith, J. O. (2007). Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE, 2(2), e180.CrossRefGoogle Scholar
  27. 27.
    Kuan, P. F., Chung, D., Pan, G., Thomson, J. A., Stewart, R., & Kele, S. (2011). A statistical framework for the analysis of ChIP-Seq data. Journal of the American Statistical Association, 106, 891–903.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Spyrou, C., Stark, R., Lynch, A. G., & Tavare, S. (2009). BayesPeak: Bayesian analysis of ChIP-Seq data. BMC Bioinformatics, 10, 299.CrossRefGoogle Scholar
  29. 29.
    Krestyannikov, E., & Ruotsalainen, U. (2004). Quantitatively accurate data recovery from attenuation-corrected sinogram using filtering of sinusoidal trajectory signals. IEEE Nuclear Science Symposium, 5, 3195–3199.Google Scholar
  30. 30.
    Zaidi, H., & Montandon, M. L. (2007). Scatter compensation techniques in PET. PET Clinics, 2, 219–234.CrossRefGoogle Scholar
  31. 31.
    Watson, C. C. (2000). New, faster, image-based scatter correction for 3D PET. IEEE Transactions on Nuclear Science, 47(4), 1587–1594.CrossRefGoogle Scholar
  32. 32.
    Santarelli, M. F., Positano, V., & Landini, L. (2014). Dynamic PET data generation and analysis software tool for evaluating the SNR dependence on kinetic parameters estimation. IFMBE Proceedings, 45, 204–207.CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Ye, Z., & Lord, D. (2007). Estimating dispersion parameter of negative binomial distribution for analysis of crash data. Bootstrapped maximum likelihood method. Transportation Research Record: Journal of the Transportation Research Board, 2019, 15–21.CrossRefGoogle Scholar
  34. 34.
    Saha, G. B. (2010). Basic of PET imaging: Physics, chemistry, and regulations. Elsevier.Google Scholar
  35. 35.
  36. 36.
    Castiglioni, I., Cremonesi, O., Gilardi, M. C., Bettinardi, V., Rizzo, G., Savi, A., et al. (1999). Scatter correction techniques in 3D PET: A Monte Carlo evaluation. IEEE Transaction on Nuclear Science, 46, 2053–2058.CrossRefGoogle Scholar
  37. 37.
    Bonneson J. A., Lord D., Zimmerman K., Fitzpatrick K., & Pratt M. (2007). Development of tools for evaluating the safety implications of highway design decisions. Publication FHWA/TX-07/0-4703-4, Texas Transportation Institute, College Station, Texas.Google Scholar
  38. 38.
    Fano, U. (1947). Ionization yield of radiations. II. The fluctuations of the number of ions. Physical Review, 72, 26.CrossRefGoogle Scholar
  39. 39.
    Kinahan, P. E., Hasegawa, B. H., & Beyer, T. (2003). X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Seminars in Nuclear Medicine, 33(3), 166–179.CrossRefGoogle Scholar
  40. 40.
    Sureshbabu, W., & Mawlawi, O. (2005). PET/CT imaging artifacts. Journal of Nuclear Medicine Technology, 33(3), 156–161.Google Scholar
  41. 41.
    Kinahan, P. E., Townsend, D. W., Beyer, T., & Sashin, D. (1998). Attenuation correction for a combined 3D PET/CT scanner. Medical Physics, 25(10), 2046–2053.CrossRefGoogle Scholar
  42. 42.
    Alessio, A., & Kinahan, P. (2006). PET image reconstruction. In Henkin et al. (Eds.), Nuclear medicine (2nd ed.). Philadelphia: Elsevier.Google Scholar
  43. 43.
    Fahey, F. H. (2002). Data acquisition in PET imaging. Journal of Nuclear Medicine Technology, 30(2), 39–49.Google Scholar
  44. 44.
    Defrise, M., Kinahan, P. E., Townsend, D. W., Michel, C., Sibomana, M., & Newport, D. F. (1997). Exact and approximate rebinning algorithms for 3-D PET data. IEEE Transactions on Medical Imaging, 16(2), 145–158.CrossRefGoogle Scholar
  45. 45.
    Phelps, M. E. (2006). PET: Physics, instrumentation and scanners. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Maria Filomena Santarelli
    • 1
    • 2
  • Vincenzo Positano
    • 2
  • Luigi Landini
    • 1
    • 2
    • 3
  1. 1.Institute of Clinical PhysiologyNational Research CouncilPisaItaly
  2. 2.Fondazione CNR-Regione Toscana “G. Monasterio”PisaItaly
  3. 3.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations