Ultra-stable 2D cuprofullerene imidazolate polymer as a high-performance visible-light photodetector

具有高性能可见光探测功能的超稳定二维咪唑铜 (I)富勒烯配位聚合物材料

摘要

本工作通过溶剂热法制备了一种超稳定二维层状铜(I)富勒 烯配位聚合物材料. Cu-(η2-C60)配位作用和层间凹凸π⋅⋅⋅π相互作用 支撑C60分子排列形成倾斜六方面堆积((i-hfp))特点, 显著地改善了 材料的化学稳定性. 该材料表现出高性能可见光探测功能. 密度泛 函计算表明, 与六方紧密堆积和立方堆积的C60纳米材料类似, 其优 异的光探测功能主要来源于C60分子本身, 但是铜(I)的配位显著增 强了其对可见光的吸收效率, 改善了材料的可见光探测功能. 该工 作对于拓展富勒烯光电功能材料的种类具有重要意义.

References

  1. 1

    Kroto HW, Heath JR, O’Brien SC, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163

    CAS  Article  Google Scholar 

  2. 2

    Gong X, Tong M, Xia Y, et al. High-detectivity polymer photo-detectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667

    CAS  Google Scholar 

  3. 3

    Saran R, Curry RJ. Solution processable 1D fullerene C60 crystals for visible spectrum photodetectors. Small, 2018, 14: 1703624

    Article  Google Scholar 

  4. 4

    Zheng S, Xiong X, Zheng Z, et al. Solution-grown large-area C60 single-crystal arrays as organic photodetectors. Carbon, 2018, 126: 299–304

    CAS  Article  Google Scholar 

  5. 5

    Liu K, Gao S, Zheng Z, et al. Spatially confined growth of fullerene to super-long crystalline fibers in supramolecular gels for highperformance photodetector. Adv Mater, 2019, 31: 1808254

    Article  Google Scholar 

  6. 6

    Yang D, Zhou X, Ma D. Fast response organic photodetectors with high detectivity based on rubrene and C60. Org Electron, 2013, 14: 3019–3023

    CAS  Article  Google Scholar 

  7. 7

    Kang H, Lee W, Oh J, et al. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc Chem Res, 2016, 49: 2424–2434

    CAS  Article  Google Scholar 

  8. 8

    Wu KY, Wu TY, Chang ST, et al. A facile PDMS-assisted crystallization for the crystal-engineering of C60 single-crystal organic field-effect transistors. Adv Mater, 2015, 27: 4371–4376

    CAS  Article  Google Scholar 

  9. 9

    Wang J, Xu L, Zhang B, et al. n-Type doping induced by electron transport layer in organic photovoltaic devices. Adv Electron Mater, 2017, 3: 1600458

    Article  Google Scholar 

  10. 10

    Balch AL, Winkler K. Two-component polymeric materials of fullerenes and the transition metal complexes: a bridge between metal-organic frameworks and conducting polymers. Chem Rev, 2016, 116: 3812–3882

    CAS  Article  Google Scholar 

  11. 11

    Liu X, Kozlowska M, Okkali T, et al. Photoconductivity in metal-organic framework (MOF) thin films. Angew Chem Int Ed, 2019, 58: 9590–9595

    CAS  Article  Google Scholar 

  12. 12

    Goswami S, Ray D, Otake KI, et al. A porous, electrically conductive hexa-zirconium(iv) metal-organic framework. Chem Sci, 2018, 9: 4477–4482

    CAS  Article  Google Scholar 

  13. 13

    Yang F, Cheng S, Zhang X, et al. 2D organic materials for optoelectronic applications. Adv Mater, 2018, 30: 1702415

    Article  Google Scholar 

  14. 14

    Huang Q, Zhuang G, Jia H, et al. Photoconductive curved-nano-graphene/fullerene supramolecular heterojunctions. Angew Chem Int Ed, 2019, 58: 6244–6249

    CAS  Article  Google Scholar 

  15. 15

    Liu YM, Xia D, Li BW, et al. Functional sulfur-doped buckybowls and their concave-convex supramolecular assembly with fullerenes. Angew Chem Int Ed, 2016, 55: 13047–13051

    CAS  Article  Google Scholar 

  16. 16

    Li B, Zhen J, Wan Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl Mater Interfaces, 2018, 10: 32471–32482

    CAS  Article  Google Scholar 

  17. 17

    Hwang IW, Xu QH, Soci C, et al. Ultrafast spectroscopic study of photoinduced electron transfer in an oligo(thienylenevinylene): fullerene composite. Adv Funct Mater, 2007, 17: 563–568

    CAS  Article  Google Scholar 

  18. 18

    Sariciftci NS, Smilowitz L, Heeger AJ, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258: 1474–1476

    CAS  Article  Google Scholar 

  19. 19

    Wang C, Wang H, Liu C, et al. Molecular assembly-induced charge transfer between a mixed (phthalocyaninato)(porphyrinato) yttrium triple-decker and a fullerene. Inorg Chem Front, 2019, 6: 654–658

    CAS  Google Scholar 

  20. 20

    Jiang X, Yuan M, Liu H, et al. Optoelectronic properties of one-dimensional fullerene nanorods. Mater Lett, 2016, 176: 52–55

    CAS  Article  Google Scholar 

  21. 21

    Saran R, Stolojan V, Curry RJ. Ultrahigh performance C60 nanorod large area flexible photoconductor devices via ultralow organic and inorganic photodoping. Sci Rep, 2014, 4: 5041

    CAS  Article  Google Scholar 

  22. 22

    Geng J, Zhou W, Skelton P, et al. Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires. J Am Chem Soc, 2008, 130: 2527–2534

    CAS  Article  Google Scholar 

  23. 23

    Zhan SZ, Zhang GH, Li JH, et al. Exohedral cuprofullerene: sequentially expanding metal olefin up to a C60@Cu24 rhombicuboctahedron. J Am Chem Soc, 2020, 142: 5943–5947

    CAS  Article  Google Scholar 

  24. 24

    Chu D, Liu Y, Li Y, et al. Journey to the holy grail of a coordination saturated buckyball. Inorg Chem Front, 2020, 7: 2556–2559

    CAS  Article  Google Scholar 

  25. 25

    Lebedeva MA, Chamberlain TW, Khlobystov AN. Harnessing the synergistic and complementary properties of fullerene and transition-metal compounds for nanomaterial applications. Chem Rev, 2015, 115: 11301–11351

    CAS  Article  Google Scholar 

  26. 26

    Konarev DV, Khasanov SS, Nakano Y, et al. Linear coordination fullerene C60 polymer [{Ni(Me3P)2}(μ-η2, η2-C60)], bridged by zerovalent nickel atoms. Inorg Chem, 2014, 53: 11960–11965

    CAS  Article  Google Scholar 

  27. 27

    Aghabali A, Jun S, Olmstead MM, et al. Silver(I)-mediated modification, dimerization, and polymerization of an open-cage full-erene. J Am Chem Soc, 2016, 138: 16459–16465

    CAS  Article  Google Scholar 

  28. 28

    Peng P, Li FF, Bowles FL, et al. High yield synthesis of a new fullerene linker and its use in the formation of a linear coordination polymer by silver complexation. Chem Commun, 2013, 49: 3209–3211

    CAS  Article  Google Scholar 

  29. 29

    Chancellor CJ, Olmstead MM, Balch AL. Formation of crystalline polymers from the reaction of amine-functionalized C60 with silver salts. Inorg Chem, 2009, 48: 1339–1345

    CAS  Article  Google Scholar 

  30. 30

    Lee K, Song H, Park JT. [60]Fullerene-metal cluster complexes: Novel bonding modes and electronic communication. Acc Chem Res, 2003, 36: 78–86

    CAS  Article  Google Scholar 

  31. 31

    Gradzka E, Wysocka-Żołopa M, Winkler K. In situ conductance studies of two-component C60-Pd polymer. J Phys Chem C, 2014, 118: 14061–14072

    CAS  Article  Google Scholar 

  32. 32

    Nagashima H, Nakaoka A, Saito Y, et al. C60Pdn: the first organometallic polymer of buckminsterfullerene. J Chem Soc Chem Commun, 1992, 377

  33. 33

    Tanaka M, Yamanaka S. Vapor-phase growth and structural characterization of single crystals of magnesium doped two-dimensional fullerene polymer Mg2C60. Cryst Growth Des, 2018, 18: 3877–3882

    CAS  Article  Google Scholar 

  34. 34

    Zhan SZ, Li JH, Zhang GH, et al. Coordination disk-type nano-Saturn complexes. Chem Commun, 2020, 56: 3325–3328

    CAS  Article  Google Scholar 

  35. 35

    Huang XC, Zhang JP, Chen XM. A new route to supramolecular isomers via molecular templating: nanosized molecular polygons of copper(I) 2-methylimidazolates. J Am Chem Soc, 2004, 126: 13218–13219

    CAS  Article  Google Scholar 

  36. 36

    Santiso-Quinones G, Reisinger A, Slattery J, et al. Homoleptic Cu-phosphorus and Cu-ethene complexes. Chem Commun, 2007, 53: 5046

    Article  Google Scholar 

  37. 37

    Jayaratna NB, Cowan MG, Parasar D, et al. Low heat of adsorption of ethylene achieved by major solid-state structural rearrangement of a discrete copper(I) complex. Angew Chem Int Ed, 2018, 57: 16442–16446

    CAS  Article  Google Scholar 

  38. 38

    Seo DK, Hoffmann R. Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials. Theor Chem Acc, 1999, 102: 23–32

    CAS  Article  Google Scholar 

  39. 39

    Liu J, Zhou W, Liu J, et al. Photoinduced charge-carrier generation in epitaxial mof thin films: High efficiency as a result of an indirect electronic band gap? Angew Chem Int Ed, 2015, 54: 7441–7445

    CAS  Article  Google Scholar 

  40. 40

    Alers GB, Golding B, Kortan AR, et al. Existence of an orientational electric dipolar response in C60 single crystals. Science, 1991, 257: 511–514

    Article  Google Scholar 

  41. 41

    Wen C, Li J, Kitazawa K, et al. Electrical conductivity of a pure C60 single crystal. Appl Phys Lett, 1992, 61: 2162–2163

    CAS  Article  Google Scholar 

  42. 42

    Mort J, Ziolo R, Machonkin M, et al. Electrical conductivity studies of undoped solid films of C60/70. Chem Phys Lett, 1991, 186: 284–286

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21731002, 21975104, 22071141 and 21471094), Guangdong Major Project of Basic and Applied Research (2019B030302009), and Guangdong Basic and Applied Basic Research Foundation (2019A1515012162).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shun-Ze Zhan 詹顺泽 or Dan Li 李丹.

Additional information

Author contributions

Zhan SZ contributed to data analysis and wrote the paper with support from Li Y. Li JH performed the synthesis and characterizations. Li Y and Xu G fabricated the photodetector device, measured and discussed the photoelectronic performance. Luo DF and Dang L performed the band structure calculations. Li D supervised the project. All authors contributed to the general discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

Shun-Ze Zhan obtained his BSc degree (1999) from China Three Gorges University, and PhD degree (2012) from Shantou University supervised by Professor Dan Li. He is currently an associate professor at Shantou University. His research interest is the design and fabrication of photofunctional coinage metal complexes and exohedral metallofullerene materials.

Dan Li obtained his BSc (1984) and PhD (1993) degrees from Sun Yat-Sen University and The University of Hong Kong, respectively. He worked in Shantou University and moved to Jinan University in 2016. His research interest is the design and fabrication of supramolecular coordination assemblies and their functions.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhan, SZ., Li, JH., Li, Y. et al. Ultra-stable 2D cuprofullerene imidazolate polymer as a high-performance visible-light photodetector. Sci. China Mater. (2021). https://doi.org/10.1007/s40843-020-1589-7

Download citation