Skip to main content
Log in

Insoluble polyanionic anthraquinones with two strong ionic O-K bonds as stable organic cathodes for pure organic K-ion batteries

一种新型不溶多阴离子有机正极材料在全有机钾离子电池中的应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A new organic cathode namely potassium 2,6-dihydroxyanthraquinone (AQ26OK, theoretical capacity (CT) = 169 mA h g−1) is synthesized and fully characterized for K-ion batteries. AQ26OK is called polyanionic organic cathode because it has a polyanionic organic skeleton (−2 valent) and two strong ionic K-O bonds. Consequently, the polyanionic AQ26OK is hardly soluble into most organic liquid electrolytes. In half cells (0.3–3.4 V vs. K+/K) using 1 mol L−1 KPF6 in dimethoxyethane, AQ26OK delivers a highly stable specific capacity of 201 mA h g−1@50 mA g−1 over 450 cycles (4-month test) and realizes ~106 mA h g−1 for 3200 cycles at 500 mA g−1. Using the reduced state (K4TP) of potassium terephthalate (K2TP) as the organic anode, the resulting K4TP II AQ26OK organic potassium ion batteries can display a highly stable average discharge capacity of 135 mA h g−1cathode over 250 cycles at 100 mA g−1 and ~47 mA h g−1 for 1000 cycles at 500 mA g−1 during the working voltage of 0.01–3.1 V. To the best of our knowledge, AQ26OK is among the best stable cathodes reported for K ion batteries.

摘要

有机小分子电极材料普遍会溶解在电解液中. 本文报道了一个新型有机小分子化合物蒽醌-2,6-二羟基钾(AQ26OK, 理论比容量:169 mA h g−1)作为钾离子电池的正极材料. AQ26OK在大π共轭蒽醌的基础上含有2个强的O-K离子键, 使得有机框架为−2价. 因此, AQ26OK可以称为多阴离子有机电极材料. AQ26OK在醚类电解液中基本不溶, 从而在钾离子电池中展现出较高的循环稳定性. 在半电池中(0.3–3.4 V), 使用1 mol L−1 KPF6 乙二醇二甲醚作为电解液, AQ26OK在50 mA g−1的小电流下可以达到201 mA h g−1的比容量, 且可以稳定循环超过450圈(寿命至少4个月); 其在大电流(500 mA g−1)下可以达到106 mA h g−1的比容量且循环3200圈. 在使用对苯二甲酸钾还原态(K4TP)作为有机负极的全有机钾离子电池中, 此K4TP IIAQ26OK有机钾离子电池(0.01–3.0 V)在小电流(100 mA g−1)下可以稳定循环超过250圈且平均放电比容量约为135 mA h g−1; 其在大电流(500 mA g−1)下循环1000圈的平均比容量约为47 mA h g−1. AQ26OK是目前钾离子电池有机正极中最稳定的材料之一.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eftekhari A, Jian Z, Ji X. Potassium secondary batteries. ACS Appl Mater Interfaces, 2017, 9: 4404–4419

    Article  CAS  Google Scholar 

  2. Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater, 2018, 28: 1802938

    Article  Google Scholar 

  3. Ji B, Yao W, Zheng Y, et al. A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat Commun, 2020, 11: 1225

    Article  CAS  Google Scholar 

  4. Zhang SS. Identifying rate limitation and a guide to design of fast-charging Li-ion battery. InfoMat, 2020, 2: 942–949

    Article  Google Scholar 

  5. Wang B, Yuan F, Li W, et al. Rational formation of solid electrolyte interface for high-rate potassium ion batteries. Nano Energy, 2020, 75: 104979

    Article  CAS  Google Scholar 

  6. Zeng L, Liu M, Li P, et al. A high-volumetric-capacity bismuth nanosheet/graphene electrode for potassium ion batteries. Sci China Mater, 2020, 63: 1920–1928

    Article  CAS  Google Scholar 

  7. Hu Y, Tang W, Yu Q, et al. In situ electrochemical synthesis of novel lithium-rich organic cathodes for all-organic li-ion full batteries. ACS Appl Mater Interfaces, 2019, 11: 32987–32993

    Article  CAS  Google Scholar 

  8. Liang Y, Luo C, Wang F, et al. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater, 2019, 9: 1802986

    Article  Google Scholar 

  9. Zhou J, Liu Y, Zhang S, et al. Metal chalcogenides for potassium storage. InfoMat, 2020, 2: 437–465

    Article  CAS  Google Scholar 

  10. Rajagopalan R, Tang Y, Ji X, et al. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv Funct Mater, 2020, 30: 1909486

    Article  CAS  Google Scholar 

  11. Bie X, Kubota K, Hosaka T, et al. A novel K-ion battery: Hexacyanoferrate (II)/graphite cell. J Mater Chem A, 2017, 5: 4325–4330

    Article  CAS  Google Scholar 

  12. Hosaka T, Kubota K, Hameed AS, et al. Research development on K-ion batteries. Chem Rev, 2020, 120: 6358–6466

    Article  CAS  Google Scholar 

  13. Fan L, Ma R, Zhang Q, et al. Graphite anode for a potassium-ion battery with unprecedented performance. Angew Chem Int Ed, 2019, 58: 10500–10505

    Article  CAS  Google Scholar 

  14. Lei K, Wang C, Liu L, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed, 2018, 57: 4687–4691

    Article  CAS  Google Scholar 

  15. Tian B, Zheng J, Zhao C, et al. Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. J Mater Chem A, 2019, 7: 9997–10003

    Article  CAS  Google Scholar 

  16. Fan L, Ma R, Wang J, et al. An ultrafast and highly stable potassium-organic battery. Adv Mater, 2018, 30: 1805486

    Article  Google Scholar 

  17. Zhao J, Yang J, Sun P, et al. Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem Commun, 2018, 86: 34–37

    Article  CAS  Google Scholar 

  18. Li C, Xue J, Ma J, et al. Conjugated dicarboxylate with extended naphthyl skeleton as an advanced organic anode for potassium-ion battery. J Electrochem Soc, 2018, 166: A5221–A5225

    Article  Google Scholar 

  19. Lei K, Li F, Mu C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci, 2017, 10: 552–557

    Article  CAS  Google Scholar 

  20. Hu Y, Ding H, Bai Y, et al. Rational design of a polyimide cathode for a stable and high-rate potassium-ion battery. ACS Appl Mater Interfaces, 2019, 11: 42078–42085

    Article  CAS  Google Scholar 

  21. Xu L, Zhang J, Yin L, et al. Recent progress in efficient organic two-photon dyes for fluorescence imaging and photodynamic therapy. J Mater Chem C, 2020, 8: 6342–6349

    Article  CAS  Google Scholar 

  22. Zhao Q, Wang J, Lu Y, et al. Oxocarbon salts for fast rechargeable batteries. Angew Chem Int Ed, 2016, 55: 12528–12532

    Article  CAS  Google Scholar 

  23. Lee M, Hong J, Lopez J, et al. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat Energy, 2017, 2: 861–868

    Article  CAS  Google Scholar 

  24. Tang W, Liang R, Li D, et al. Highly stable and high rate-performance Na-ion batteries using polyanionic anthraquinone as the organic cathode. ChemSusChem, 2019, 12: 2181–2185

    Article  CAS  Google Scholar 

  25. Li D, Tang W, Yong CY, et al. Long-lifespan polyanionic organic cathodes for highly efficient organic sodium-ion batteries. ChemSusChem, 2020, 13: 1991–1996

    Article  Google Scholar 

  26. Li D, Tang W, Wang C, et al. A polyanionic organic cathode for highly efficient K-ion full batteries. Electrochem Commun, 2019, 105: 106509

    Article  CAS  Google Scholar 

  27. Deng Q, Pei J, Fan C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy, 2017, 33: 350–355

    Article  CAS  Google Scholar 

  28. Hu Y, Tang W, Yu Q, et al. Novel insoluble organic cathodes for advanced organic K-ion batteries. Adv Funct Mater, 2020, 30: 2000675

    Article  CAS  Google Scholar 

  29. Hu J, Liang R, Tang W, et al. Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. Int J Hydrogen Energy, 2020, 45: 24573–24581

    Article  CAS  Google Scholar 

  30. Mu L, Lu Y, Wu X, et al. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. Green Energy Environ, 2018, 3: 63–70

    Article  Google Scholar 

  31. Guo C, Zhang K, Zhao Q, et al. High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem Commun, 2015, 51: 10244–10247

    Article  CAS  Google Scholar 

  32. Wang C, Tang W, Yao Z, et al. Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries. Org Electron, 2018, 62: 536–541

    Article  CAS  Google Scholar 

  33. Li B, Zhao J, Zhang Z, et al. Electrolyte-regulated solid-electrolyte interphase enables long cycle life performance in organic cathodes for potassium-ion batteries. Adv Funct Mater, 2018, 1807137

  34. Deng T, Fan X, Chen J, et al. Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries. Adv Funct Mater, 2018, 28: 1800219

    Article  Google Scholar 

  35. Hameed AS, Katogi A, Kubota K, et al. A layered inorganic-organic open framework material as a 4 V positive electrode with high-rate performance for K-ion batteries Adv Energy Mater, 2019, 9: 1902528

    Article  CAS  Google Scholar 

  36. Luo C, Xu GL, Ji X, et al. Reversible redox chemistry of azo compounds for sodium-ion batteries Angew Chem Int Ed, 2018, 57: 2879–2883

    Article  CAS  Google Scholar 

  37. Tang K, Yu X, Sun J, et al. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta, 2011, 56: 4869–4875

    Article  CAS  Google Scholar 

  38. Yang J, Su H, Wang Z, et al. An insoluble anthraquinone dimer with near-plane structure as a cathode material for lithium-ion batteries ChemSusChem, 2020, 13: 2436–2442

    Article  CAS  Google Scholar 

  39. Tang M, Wu Y, Chen Y, et al. An organic cathode with high capacities for fast-charge potassium-ion batteries J Mater Chem A, 2019, 7: 486–492

    Article  CAS  Google Scholar 

  40. Liao J, Hu Q, Yu Y, et al. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte J Mater Chem A, 2017, 5: 19017–19024

    Article  CAS  Google Scholar 

  41. Zhang C, Xu Y, Zhou M, et al. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries Adv Funct Mater, 2017, 27: 1604307

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds of University of Electronic Science and Technology of China (UESTC, ZYGX2019J027), the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices of UESTC (KFJJ201915), and Sichuan Science and Technology Program (20YYJC3821)

Author information

Authors and Affiliations

Authors

Contributions

Fan C conceived and supervised the research ideas; Hu J performed the experiments, organized the data and wrote the raw paper; Tang W, Liu S, Hu Y and Lai H carried out the characterizations; Yan Y and Xu L provided data curation All authors contributed to the general discussion

Corresponding author

Correspondence to Cong Fan  (樊聪).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest

Jiahui Hu is a master degree candidate at the School of Materials and Energy, University of Electronic Science and Technology of China (UESTC) under the supervision of Prof. Cong Fan. Her current research interests mainly focus on the design and synthesis of novel organic electrodes for Li/Na/K-ion batteries.

Cong Fan received his bachelor (2008) and PhD (2013) degrees in organic chemistry from Wuhan University. He is an associate professor at UESTC since August 2015. His current research interests are the skilled synthesis of organic electrode materials for rechargeable batteries.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Tang, W., Liu, S. et al. Insoluble polyanionic anthraquinones with two strong ionic O-K bonds as stable organic cathodes for pure organic K-ion batteries. Sci. China Mater. 64, 1598–1608 (2021). https://doi.org/10.1007/s40843-020-1556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1556-9

Keywords

Navigation