Size-dependent deformation behavior of dual-phase, nanostructured CrCoNi medium-entropy alloy

双相纳米结构CrCoNi中熵合金变形行为的尺寸效应

Abstract

The mechanical size effect of nanostructured, dual-phase CrCoNi medium-entropy alloy (MEA) was investigated by combining in-situ micro-compression testing with post-mortem electron microscopy analysis. The alloy possesses a superior yield strength up to ∼4 GPa, primarily due to its hierarchical microstructure including column nanograins, preferred orientation, a high density of planar defects and the presence of the hexagonal close packed (HCP) phase. While the yield strength of the alloy has shown size-independency, the deformation behaviour was strongly dependent on the sample size. Specifically, with decreasing the pillar diameters, the dominant deformation mode changed from highly localized and catastrophic shear banding to apparently homogeneous deformation with appreciable plasticity. This transition is believed to be governed by the size-dependent critical stress required for a shear band traversing the pillar and mediated by the competition between shear-induced softening and subsequent hardening mechanisms. In addition, an unexpected phase transformation from HCP to face-centered cubic (FCC) was observed in the highly localized deformation zones, leading to strain softening that contributed to accommodating plasticity. These findings provide insights into the criticality of sample dimensions in influencing mechanical behaviors of nanostructured metallic materials used for nanoelectromechanical systems.

摘要

本文结合原位扫描电子显微镜微柱压缩与透射电子显微镜技术, 研究了具有双相多级纳米结构的CrCoNi中熵合金变形行为的尺寸效应. 研究表明, 该合金的屈服强度高达~4 GPa, 这主要归因于其多级微观结构特征, 包括柱状纳米尺寸晶粒、 织构、高密度的层错、 孪晶界、 晶界和相界. 在变形过程中, 该合金的屈服强度基本与微米尺度样品的尺寸无关, 但其变形行为却强烈依赖于样品大小. 具体来说, 随着微柱直径减小, 材料主要的变形模式从突发的局部剪切带变为具有明显塑性的均匀变形. 这种转变是由剪切带穿过微柱所需的临界应力与样品尺寸紧密相关所决定的, 剪切诱导的软化和随后的硬化机制之间的竞争也起了重要作用. 此外, 变形引起了六方密排结构到面心立方结构的相变, 该相变导致的应变软化对材料变形中的塑性有重要贡献. 这些发现揭示了样品尺寸对可用于微纳机电系统的纳米结构金属材料的力学行为有着重要影响.

References

  1. 1

    Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    CAS  Article  Google Scholar 

  2. 2

    Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218

    Article  CAS  Google Scholar 

  3. 3

    Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  CAS  Google Scholar 

  4. 4

    Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater, 2018, 61: 2–22

    CAS  Article  Google Scholar 

  5. 5

    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    CAS  Article  Google Scholar 

  6. 6

    Lin Q, An X, Liu H, et al. In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy. J Alloys Compd, 2017, 709: 802–807

    CAS  Article  Google Scholar 

  7. 7

    Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater, 2013, 61: 2628–2638

    CAS  Article  Google Scholar 

  8. 8

    Ma D, Grabowski B, Körmann F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater, 2015, 100: 90–97

    CAS  Article  Google Scholar 

  9. 9

    Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238

    CAS  Article  Google Scholar 

  10. 10

    Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dualphase alloys overcome the strength-ductility trade-off. Nature, 2016, 534: 227–230

    CAS  Article  Google Scholar 

  11. 11

    Lu W, Liebscher CH, Dehm G, et al. Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv Mater, 2018, 30: 1804727

    Article  CAS  Google Scholar 

  12. 12

    An XH, Wu SD, Wang ZG, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems. Prog Mater Sci, 2019, 101: 1–45

    CAS  Article  Google Scholar 

  13. 13

    Liu J, Guo X, Lin Q, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci China Mater, 2019, 62: 853–863

    CAS  Google Scholar 

  14. 14

    Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun, 2016, 7: 10602

    CAS  Article  Google Scholar 

  15. 15

    Niu C, LaRosa CR, Miao J, et al. Magnetically-driven phase transformation strengthening in high entropy alloys. Nat Commun, 2018, 9: 1363

    Article  CAS  Google Scholar 

  16. 16

    Ma Y, Yuan F, Yang M, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater, 2018, 148: 407–418

    CAS  Article  Google Scholar 

  17. 17

    Miao J, Slone CE, Smith TM, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater, 2017, 132: 35–48

    CAS  Article  Google Scholar 

  18. 18

    Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater, 2015, 96: 258–268

    CAS  Article  Google Scholar 

  19. 19

    Slone CE, Miao J, George EP, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Mater, 2019, 165: 496–507

    CAS  Article  Google Scholar 

  20. 20

    Sun SJ, Tian YZ, An XH, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure. Mater Today Nano, 2018, 4: 46–53

    Article  Google Scholar 

  21. 21

    He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater, 2016, 102: 187–196

    CAS  Article  Google Scholar 

  22. 22

    Guo L, Gu J, Gong X, et al. CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening. Sci China Mater, 2020, 63: 288–299

    CAS  Article  Google Scholar 

  23. 23

    Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362: 933–937

    CAS  Article  Google Scholar 

  24. 24

    Seol JB, Bae JW, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater, 2018, 151: 366–376

    CAS  Article  Google Scholar 

  25. 25

    Li Z, Tasan CC, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci Rep, 2017, 7: 40704

    CAS  Article  Google Scholar 

  26. 26

    Song M, Zhou R, Gu J, et al. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Appl Mater Today, 2020, 18: 100498

    Article  Google Scholar 

  27. 27

    Wang Z, Gu J, An D, et al. Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI. Intermetallics, 2020, 121: 106788

    CAS  Article  Google Scholar 

  28. 28

    Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563: 546–550

    CAS  Article  Google Scholar 

  29. 29

    Chen Y, Zhou Z, Munroe P, et al. Hierarchical nanostructure of CrCoNi film underlying its remarkable mechanical strength. Appl Phys Lett, 2018, 113: 081905

    Article  CAS  Google Scholar 

  30. 30

    Tsianikas SJ, Chen Y, Xie Z. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings. J Mater Sci Tech, 2020, 39: 7–13

    Article  Google Scholar 

  31. 31

    Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986–989

    CAS  Article  Google Scholar 

  32. 32

    Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B, 2006, 73: 245410

    Article  CAS  Google Scholar 

  33. 33

    Shan ZW, Mishra RK, Syed Asif SA, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater, 2008, 7: 115–119

    CAS  Article  Google Scholar 

  34. 34

    Wang ZJ, Li QJ, Shan ZW, et al. Sample size effects on the large strain bursts in submicron aluminum pillars. Appl Phys Lett, 2012, 100: 071906

    Article  CAS  Google Scholar 

  35. 35

    Nix WD, Greer JR, Feng G, et al. Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films, 2007, 515: 3152–3157

    CAS  Article  Google Scholar 

  36. 36

    Hütsch J, Lilleodden ET. The influence of focused-ion beam preparation technique on microcompression investigations: Lathe vs. annular milling. Scripta Mater, 2014, 77: 49–51

    Article  CAS  Google Scholar 

  37. 37

    Guo W, Jägle E, Yao J, et al. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater, 2014, 80: 94–106

    CAS  Article  Google Scholar 

  38. 38

    Chen CQ, Pei YT, De Hosson JTM. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater, 2010, 58: 189–200

    CAS  Article  Google Scholar 

  39. 39

    Giannuzzi LA, Stevie FA. A review of focused ion beam milling techniques for TEM specimen preparation. Micron, 1999, 30: 197–204

    Article  Google Scholar 

  40. 40

    Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci, 2011, 56: 654–724

    CAS  Article  Google Scholar 

  41. 41

    Hull D, Bacon DJ. Introduction to Dislocations. Oxford: Elsevier, 2011

    Google Scholar 

  42. 42

    Liu SF, Wu Y, Wang HT, et al. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics, 2018, 93: 269–273

    CAS  Article  Google Scholar 

  43. 43

    Lin Q, Liu J, An X, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater Res Lett, 2018, 6: 236–243

    CAS  Article  Google Scholar 

  44. 44

    Schuh B, Völker B, Todt J, et al. Influence of annealing on microstructure and mechanical properties of a nanocrystalline CrCoNi medium-entropy alloy. Materials, 2018, 11: 662

    Article  CAS  Google Scholar 

  45. 45

    Zhu ZG, Nguyen QB, Ng FL, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scripta Mater, 2018, 154: 20–24

    CAS  Article  Google Scholar 

  46. 46

    Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science, 2009, 323: 607–610

    CAS  Article  Google Scholar 

  47. 47

    Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324: 349–352

    CAS  Article  Google Scholar 

  48. 48

    Chen B, Wang J, Gao Q, et al. Strengthening brittle semiconductor nanowires through stacking faults: insights from in situ mechanical testing. Nano Lett, 2013, 13: 4369–4373

    CAS  Article  Google Scholar 

  49. 49

    Chen Y, Burgess T, An X, et al. Effect of a high density of stacking faults on the Young’s modulus of GaAs nanowires. Nano Lett, 2016, 16: 1911–1916

    CAS  Article  Google Scholar 

  50. 50

    Li Z, Tasan CC, Pradeep KG, et al. A trip-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater, 2017, 131: 323–335

    CAS  Article  Google Scholar 

  51. 51

    Wang J, Sansoz F, Huang J, et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun, 2013, 4: 1742

    Article  CAS  Google Scholar 

  52. 52

    Wang L, Lu Y, Kong D, et al. Dynamic and atomic-scale understanding of the twin thickness effect on dislocation nucleation and propagation activities by in situ bending of Ni nanowires. Acta Mater, 2015, 90: 194–203

    CAS  Article  Google Scholar 

  53. 53

    Jang D, Greer JR. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scripta Mater, 2011, 64: 77–80

    CAS  Article  Google Scholar 

  54. 54

    Chen CQ, Pei YT, Kuzmin O, et al. Intrinsic size effects in the mechanical response of taper-free nanopillars of metallic glass. Phys Rev B, 2011, 83: 180201

    Article  CAS  Google Scholar 

  55. 55

    Shan ZW, Li J, Cheng YQ, et al. Plastic flow and failure resistance of metallic glass: insight from in situ compression of nanopillars. Phys Rev B, 2008, 77: 155419

    Article  CAS  Google Scholar 

  56. 56

    Kuzmin OV, Pei YT, Chen CQ, et al. Intrinsic and extrinsic size effects in the deformation of metallic glass nanopillars. Acta Mater, 2012, 60: 889–898

    CAS  Article  Google Scholar 

  57. 57

    Khalajhedayati A, Rupert TJ. Disruption of thermally-stable nanoscale grain structures by strain localization. Sci Rep, 2015, 5: 10663

    CAS  Article  Google Scholar 

  58. 58

    Rice JR. The localization of plastic deformation. In: Proceedings of the 14th International Congress of Theoretical and Applied Mechanics. Delft, 1976. 1–14

  59. 59

    Volkert CA, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals. J Appl Phys, 2008, 103: 083539

    Article  CAS  Google Scholar 

  60. 60

    Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater, 2010, 9: 215–219

    CAS  Article  Google Scholar 

  61. 61

    Gao H, Ji B, Jager IL, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA, 2003, 100: 5597–5600

    CAS  Article  Google Scholar 

  62. 62

    Laplanche G, Gadaud P, Bärsch C, et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J Alloys Compd, 2018, 746: 244–255

    CAS  Article  Google Scholar 

  63. 63

    Wu XL, Guo YZ, Wei Q, et al. Prevalence of shear banding in compression of Zr41Ti14Cu125Ni10Be225 pillars as small as 150 nm in diameter. Acta Mater, 2009, 57: 3562–3571

    CAS  Article  Google Scholar 

  64. 64

    Schuster BE, Wei Q, Hufnagel TC, et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater, 2008, 56: 5091–5100

    CAS  Article  Google Scholar 

  65. 65

    Chen Y, An X, Liao X, et al. Effects of loading misalignment and tapering angle on the measured mechanical properties of nanowires. Nanotechnology, 2015, 26: 435704

    Article  CAS  Google Scholar 

  66. 66

    Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater, 2017, 128: 292–303

    CAS  Article  Google Scholar 

  67. 67

    Zhang ZJ, Mao MM, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun, 2015, 6: 10143

    CAS  Article  Google Scholar 

  68. 68

    Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys. Nat Commun, 2018, 9: 2381

    Article  CAS  Google Scholar 

  69. 69

    Zhang FX, Zhao S, Jin K, et al. Pressure-induced FCC to HCP phase transition in Ni-based high entropy solid solution alloys. Appl Phys Lett, 2017, 110: 011902

    Article  CAS  Google Scholar 

  70. 70

    Zhao H, Song M, Ni S, et al. Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf. Acta Mater, 2017, 131: 271–279

    CAS  Article  Google Scholar 

  71. 71

    Armstrong RW, Coffey CS, Elban WL. Adiabatic heating at a dislocation pile-up avalanche. Acta Metall, 1982, 30: 2111–2116

    CAS  Article  Google Scholar 

  72. 72

    Wei Q, Jia D, Ramesh KT, et al. Evolution and microstructure of shear bands in nanostructured Fe. Appl Phys Lett, 2002, 81: 1240–1242

    CAS  Article  Google Scholar 

  73. 73

    Zhang ZF, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater, 2003, 51: 1167–1179

    CAS  Article  Google Scholar 

  74. 74

    Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun, 2017, 8: 14390

    CAS  Article  Google Scholar 

  75. 75

    Jang D, Li X, Gao H, et al. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotech, 2012, 7: 594–601

    CAS  Article  Google Scholar 

  76. 76

    Asaro RJ. Geometrical effects in the inhomogeneous deformation of ductile single crystals. Acta Metall, 1979, 27: 445–453

    CAS  Article  Google Scholar 

  77. 77

    Fujita H, Ueda S. Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 188-type stainless steel. Acta Metall, 1972, 20: 759–767

    CAS  Article  Google Scholar 

  78. 78

    Huang JY, Wu YK, Ye HQ. Allotropic transformation of cobalt induced by ball milling. Acta Mater, 1996, 44: 1201–1209

    CAS  Article  Google Scholar 

  79. 79

    Liu Y, Yang H, Tan G, et al. Stress-induced FCC ↔ HCP martensitic transformation in CoNi. J Alloys Compd, 2004, 368: 157–163

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council Discovery Projects Grant, and partly supported by the Fundamental Research Funds for the Central Universities (SWU118105). An X acknowledges the financial support from Australia Research Council (DE170100053) and the Robinson Fellowship Scheme of the University of Sydney (G200726). The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility (ammrf.org.au) node at the University of Adelaide: Adelaide Microscopy. In particular, the authors thank Dr Animesh Basak and Dr Ashley Slattery of Adelaide Microscopy for their support and expertise.

Author information

Affiliations

Authors

Contributions

Author contributions Chen Y, Xie Z, An X and Zhang S conceived the project. Chen Y conducted the FIB, microcompression and TEM experiments. Zhou Z fabricated the samples. Chen Y, An X, Liao X and Xie Z interpreted the results and wrote the manuscript. All authors contributed to the discussion of the results, and comments on the manuscript.

Corresponding authors

Correspondence to Xianghai An 安祥海 or Sam Zhang 张善勇.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yujie Chen obtained her BEng degree (first-class honors) in 2011 and PhD degree in materials science in 2016 from The University of Sydney. Upon completion of her PhD, she was employed as a postdoc in the School of Mechanical Engineering in the University of Adelaide in Australia. She is currently a research fellow in the Southwest University in China. Her current research involves microstructure optimization and mechanical properties enhancement of alloys, and calcified tissues.

Xianghai An received his PhD degree from the Institute of Metal Research, Chinese Academy of Sciences in 2012. After receiving his PhD degree, he commenced to work as a research fellow at The University of Sydney. He is currently a Lecture/Robinson Fellow at The University of Sydney. His research mainly focuses on materials design, mechanical behavior, and structure-property relationship of advanced metallic materials, nanomechanics and nanoplasticity, metallic additive manufacturing and advanced materials processing.

Sam Zhang received his PhD degree (1991) in ceramic materials at the University of Wisconsin-Madison, USA. He joined Nanyang Technological University as an associate professor and was promoted to full professor in 2006. He is currently a professor and head of the Center for Advanced Thin Films and Devices in the Southwest University in China. He is also Fellow of the Institute of Materials, Minerals and Mining, Fellow of the Royal Society of Chemistry and Fellow of the Thin Films Society. His research interests include preparation and characterization of hard yet tough ceramic nanocomposite coatings, and functional thin films.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., An, X., Zhou, Z. et al. Size-dependent deformation behavior of dual-phase, nanostructured CrCoNi medium-entropy alloy. Sci. China Mater. 64, 209–222 (2021). https://doi.org/10.1007/s40843-020-1377-2

Download citation

Keywords

  • medium-entropy alloy
  • size effect
  • shear banding
  • phase transformation
  • nanostructure