Dual effects from in-situ polymerized gel electrolyte and boric acid for ultra-long cycle-life Li metal batteries

利用原位聚合/硼酸双重作用的凝胶电解质获得 超长寿命锂金属电池

摘要

锂金属电池具有能量密度高的优点, 有望成为下一代可充电 电池. 然而, 其液态电解液泄露的风险及锂枝晶生长造成的短路等 问题阻碍了其应用. 使用凝胶电解质被认为是提高锂金属电池安 全性的有效方法, 但是因锂枝晶生长导致循环寿命差的问题仍未有效解决. 本文设计了一种结合原位聚合和硼酸添加剂双重效果 的凝胶电解质(B-GPE), 并组装了锂金属电池进行测试. 其中, 原位 聚合的方法使得凝胶电解质与电极界面接触良好, 硼酸添加剂一 方面可以增强锂盐的稳定性, 抑制副反应发生; 另一方面可以形成 稳固的SEI膜, 抑制锂枝晶的生长. 以上双重作用使得这种凝胶电解 质应用于锂金属电池可以获得超长循环寿命, 在0.5 C的倍率下循 环950圈仍有87.7%的容量保持率, 是目前类似的凝胶电解质、液 态电解液和固态电解质应用中循环寿命最出色的. 该结果证明结合原位聚合和硼酸添加剂双重效果是制备高性能凝胶电解质的简 单且有效的策略, 并进一步为锂金属电池的广泛应用提供了有价 值的方法.

References

  1. 1

    Li S, Jiang M, Xie Y, et al. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv Mater, 2018, 30: 1706375

    Article  Google Scholar 

  2. 2

    Zhou Y, Han Y, Zhang H, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy Storage Mater, 2018, 14: 222–229

    Article  Google Scholar 

  3. 3

    Zhou Y, Zhao K, Han Y, et al. A nitrogen-doped-carbon/ZnO modified Cu foam current collector for high-performance Li metal batteries. J Mater Chem A, 2019, 7: 5712–5718

    CAS  Article  Google Scholar 

  4. 4

    Yang C, Liu B, Jiang F, et al. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res, 2017, 10: 4256–4265

    CAS  Article  Google Scholar 

  5. 5

    Li N, Wei W, Xie K, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett, 2018, 18: 2067–2073

    CAS  Article  Google Scholar 

  6. 6

    Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci USA, 2018, 115: 3770–3775

    CAS  Article  Google Scholar 

  7. 7

    Kraft MA, Ohno S, Zinkevich T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1−xGexS5I for all-solid-state batteries. J Am Chem Soc, 2018, 140: 16330–16339

    CAS  Article  Google Scholar 

  8. 8

    Liu L, Lyu J, Mo J, et al. Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. Sci China Mater, 2020, 63: 703–718

    CAS  Article  Google Scholar 

  9. 9

    Chai J, Liu Z, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for Li-CoO2 lithium batteries. Adv Sci, 2017, 4: 1600377

    Article  Google Scholar 

  10. 10

    Cheng X, Pan J, Zhao Y, et al. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater, 2018, 8: 1702184

    Article  Google Scholar 

  11. 11

    Liu M, Zhou D, He YB, et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy, 2016, 22: 278–289

    CAS  Article  Google Scholar 

  12. 12

    Wang K, Zhang X, Sun X, et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci China Mater, 2016, 59: 412–420

    CAS  Article  Google Scholar 

  13. 13

    Yu D, Li X, Xu J. Safety regulation of gel electrolytes in electrochemical energy storage devices. Sci China Mater, 2019, 62: 1556–1573

    CAS  Article  Google Scholar 

  14. 14

    Lu Q, He YB, Yu Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater, 2017, 29: 1604460

    Article  Google Scholar 

  15. 15

    Fan W, Li NW, Zhang X, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv Sci, 2018, 5: 1800559

    Article  Google Scholar 

  16. 16

    Huang Z, Ren J, Zhang W, et al. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive. Adv Mater, 2018, 30: 1803270

    Article  Google Scholar 

  17. 17

    Fan H, Li H, Fan LZ, et al. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries. J Power Sources, 2014, 249: 392–396

    CAS  Article  Google Scholar 

  18. 18

    Liu FQ, Wang WP, Yin YX, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv, 2018, 4: eaat5383

    CAS  Article  Google Scholar 

  19. 19

    Niu C, Zhang M, Chen G, et al. An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte. Electrochim Acta, 2018, 283: 349–356

    CAS  Article  Google Scholar 

  20. 20

    Bok T, Cho SJ, Choi S, et al. An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC Adv, 2016, 6: 6960–6966

    CAS  Article  Google Scholar 

  21. 21

    Tan R, Gao R, Zhao Y, et al. Novel organic-inorganic hybrid electrolyte to enable LiFePO4 quasi-solid-state Li-ion batteries performed highly around room temperature. ACS Appl Mater Interfaces, 2016, 8: 31273–31280

    CAS  Article  Google Scholar 

  22. 22

    Zhang SS, Angell CA. A novel electrolyte solvent for rechargeable lithium and lithium-ion batteries. J Electrochem Soc, 1996, 143: 4047

    CAS  Article  Google Scholar 

  23. 23

    Cai Z, Liu Y, Zhao J, et al. Tris(trimethylsilyl) borate as electrolyte additive to improve performance of lithium-ion batteries. J Power Sources, 2012, 202: 341–346

    CAS  Article  Google Scholar 

  24. 24

    Liu Q, Yang G, Liu S, et al. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl Mater Interfaces, 2019, 11: 17435–17443

    CAS  Article  Google Scholar 

  25. 25

    Matsumi N, Sugai K, Miyake M, et al. Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules, 2006, 39: 6924–6927

    CAS  Article  Google Scholar 

  26. 26

    Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev, 2011, 40: 2525–2540

    CAS  Article  Google Scholar 

  27. 27

    Chen L, Li W, Fan L, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv Funct Mater, 2019, 29: 1901047

    Article  Google Scholar 

  28. 28

    Han J, Kim K, Lee Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv Mater, 2019, 31: 1804822

    Article  Google Scholar 

  29. 29

    Wang Q, Jiang L, Yu Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019, 55: 93–114

    Article  Google Scholar 

  30. 30

    Aravindan V, Gnanaraj J, Madhavi S, et al. Lithium-ion conducting electrolyte salts for lithium batteries. Chem Eur J, 2011, 17: 14326–14346

    CAS  Article  Google Scholar 

  31. 31

    Lin Z, Guo X, Yu H. Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy, 2017, 41: 646–653

    Article  Google Scholar 

  32. 32

    Zhu YS, Gao XW, Wang XJ, et al. A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem Commun, 2012, 22: 29–32

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology of China (2016YFA0200200), the National Natural Science Foundation of China (21421001 and 51633002), Tianjin city (16ZXCLGX00100) and 111 Project (B12015).

Author information

Affiliations

Authors

Contributions

Han Y, Chen Y and Zhou Y designed the project; Han Y fabricated the electrolyte and assembled the cells. Zhu J and Sun Z finished the XRD characterization; Han Y wrote the paper with support from Chen Y, Zhang H, Sun Z, Ma Y and Li C. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Hongtao Zhang 张洪涛 or Yongsheng Chen 陈永胜.

Additional information

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Conflict of interest

The authors declare no conflict of interest.

Yu Han is currently a graduate student at Nankai University under the direction of Prof. Yongsheng Chen. She obtained her BSc degree from Lanzhou University in 2017. Her main research interests are focused on gel electrolyte and the related applications in energy storage.

Hongtao Zhang received his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences in 2012. He joined Prof. Yongsheng Chen’s group at Nankai University in 2014. Thereafter, he became an associate professor. His current research interests mainly focus on the synthesis and characterization of organic and polymer functional materials and their application in energy conversion and storage devices.

Yongsheng Chen graduated from the University of Victoria with a PhD degree in chemistry in 1997 and then joined the University of Kentucky and the University of California at Los Angeles for postdoctoral studies from 1997 to 1999. From 2003, he has been a Chair Professor at Nankai University. His main research interests include: i) carbon-based nanomaterials, including carbon nanotubes and graphene; ii) organic and polymeric functional materials, and iii) energy devices including organic photovoltaics and supercapacitors.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhou, Y., Zhu, J. et al. Dual effects from in-situ polymerized gel electrolyte and boric acid for ultra-long cycle-life Li metal batteries. Sci. China Mater. (2020). https://doi.org/10.1007/s40843-020-1359-8

Download citation