Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution

吡啶调节2D双金属有机框架及其电催化析氧性能研究

Abstract

Two-dimensional (2D) metal-organic frameworks (MOFs) are promising for electrocatalysis with high performance, as they possess large surface areas and high densities of exposed active sites. It attracts tremendous attention to obtain 2D nanostructures via simple preparation methods. Herein, a facile pyridine-modulated solvothermal synthesis of Ni/Co bimetallic MOF nanoplates (NixCoy-bpy (PyM)) is reported with well-defined 2D morphology with a thickness as thin as 20 nm and an aspect ratio larger than 50. These nanoplates possess oxygen evolution reaction activity as electrocatalysts in alkaline conditions. Specifically, Ni0.5Co1.5-bpy(PyM) exhibits excellent OER electrocatalytic activity with a low overpotential of 256 mV at 10 mA cm−2 and a small Tafel slope of 81.8 mV dec−1 in 1.0 mol L−1 KOH with long-term electrochemical stability for 3000 cyclic voltammetry cycles. The high catalytic activity of Ni0.5Co1.5-bpy(PyM) can be attributed to the in situ formed active hydroxide and oxyhydroxide species within the inherited 2D morphology and the optimized bimetallic ratio.

摘要

二维金属有机骨架(2D MOF)具有较大的比表面积和较高的活性位点密度, 是改善电催化性能的理想载体. 通过简单的制备方法获得2D纳米结构受到了广泛的关注. 本文提出了一种吡啶调节溶剂热合成方法, 用于合成镍/钴双金属MOF纳米片. 得到的MOF材料具有矩形2D形貌, 厚度约20纳米. 这些纳米片作为电催化剂在碱性条件下表现出析氧反应(OER)活性. 其中, Ni0.5Co1.5-bpy(PyM) 在1.0 mol L−1 KOH 溶液中、电流密度10 mA cm−2 时过电位低至 256 mV, Tafel斜率为81.8 mV dec−1, 且具有良好的电化学稳定性. 对催化反应后的电极材料研究表明, Ni0.5Co1.5-bpy(byM) 的高催化活性来源于原位形成的活性氢氧化物和羟基氧化物. 该研究为2DMOF材料的可控合成及其与电催化性能构效关系的研究提供了理论基础.

References

  1. 1

    Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 1230444

    Article  CAS  Google Scholar 

  2. 2

    Li B, Wen HM, Cui Y, et al. Emerging multifunctional metal-organic framework materials. Adv Mater, 2016, 28: 8819–8860

    CAS  Article  Google Scholar 

  3. 3

    Liang Z, Zhao R, Qiu T, et al. Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1: 100001

    Article  Google Scholar 

  4. 4

    Shi D, Zheng R, Sun MJ, et al. Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew Chem Int Ed, 2017, 56: 14637–14641

    CAS  Article  Google Scholar 

  5. 5

    Yang X, Xu Q. Bimetallic metal-organic frameworks for gas storage and separation. Cryst Growth Des, 2017, 17: 1450–1455

    CAS  Article  Google Scholar 

  6. 6

    Zhao M, Huang Y, Peng Y, et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev, 2018, 47: 6267–6295

    CAS  Article  Google Scholar 

  7. 7

    Xiao X, Zou L, Pang H, et al. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev, 2020, 49: 301–331

    CAS  Article  Google Scholar 

  8. 8

    Huang Y, Zhao M, Han S, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater, 2017, 29: 1700102

    Article  CAS  Google Scholar 

  9. 9

    Jiang W, Wang H, Zhang X, et al. Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Sci China Chem, 2018, 61: 1205–1213

    CAS  Article  Google Scholar 

  10. 10

    Wang X, Li P, Li Z, et al. 2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes. Chem Commun, 2019, 55: 6563–6566

    CAS  Article  Google Scholar 

  11. 11

    Chen S, Kang Z, Zhang X, et al. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electrocatalytic oxygen evolution. ACS Cent Sci, 2017, 3: 1221–1227

    CAS  Article  Google Scholar 

  12. 12

    Xiao Y, Guo W, Chen H, et al. Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Mater Chem Front, 2019, 3: 1580–1585

    CAS  Article  Google Scholar 

  13. 13

    He T, Ni B, Ou Y, et al. Nanosheet-assembled hierarchical carbon nanoframeworks bearing a multiactive center for oxygen reduction reaction. Small Methods, 2018, 2: 1800068

    Article  CAS  Google Scholar 

  14. 14

    Xu X, Lu Y, Yang Y, et al. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci China Mater, 2015, 58: 370–377

    CAS  Article  Google Scholar 

  15. 15

    Zhao M, Lu Q, Ma Q, et al. Two-dimensional metal-organic framework nanosheets. Small Methods, 2017, 1: 1600030

    Article  CAS  Google Scholar 

  16. 16

    Ding Y, Chen YP, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J Am Chem Soc, 2017, 139: 9136–9139

    CAS  Article  Google Scholar 

  17. 17

    Rui K, Zhao G, Chen Y, et al. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater, 2018, 28: 1801554

    Article  CAS  Google Scholar 

  18. 18

    Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy, 2016, 1: 16184

    CAS  Article  Google Scholar 

  19. 19

    Wang X, Xiao H, Li A, et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J Am Chem Soc, 2018, 140: 15336–15341

    CAS  Article  Google Scholar 

  20. 20

    Li FL, Wang P, Huang X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed, 2019, 58: 7051–7056

    CAS  Article  Google Scholar 

  21. 21

    Zhao K, Liu S, Ye G, et al. High-yield bottom-up synthesis of 2D metal-organic frameworks and their derived ultrathin carbon nanosheets for energy storage. J Mater Chem A, 2018, 6: 2166–2175

    CAS  Article  Google Scholar 

  22. 22

    Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat Chem, 2016, 8: 718–724

    CAS  Article  Google Scholar 

  23. 23

    Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew Chem Int Ed, 2009, 48: 4739–4743

    CAS  Article  Google Scholar 

  24. 24

    Lin Y, Chen G, Wan H, et al. 2D free-standing nitrogen-doped Ni-Ni3S2@carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction. Small, 2019, 15: 1900348

    Article  CAS  Google Scholar 

  25. 25

    Zhu B, Xia D, Zou R. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coord Chem Rev, 2018, 376: 430–448

    CAS  Article  Google Scholar 

  26. 26

    Xu Y, Li Q, Xue H, et al. Metal-organic frameworks for direct electrochemical applications. Coord Chem Rev, 2018, 376: 292–318

    CAS  Article  Google Scholar 

  27. 27

    Zhang S, Ye H, Hua J, et al. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1: 100015

    Article  Google Scholar 

  28. 28

    Sun Y, Zhang X, Luo M, et al. Ultrathin PtPd-based nanorings with abundant step atoms enhance oxygen catalysis. Adv Mater, 2018, 30: 1802136

    Article  CAS  Google Scholar 

  29. 29

    Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev, 2018, 118: 6337–6408

    CAS  Article  Google Scholar 

  30. 30

    Han N, Zhao F, Li Y. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J Mater Chem A, 2015, 3: 16348–16353

    CAS  Article  Google Scholar 

  31. 31

    Huang X, Wang Y, Li W, et al. Noble metal-free catalysts for oxygen reduction reaction. Sci China Chem, 2017, 60: 1494–1507

    CAS  Article  Google Scholar 

  32. 32

    Tao L, Lin CY, Dou S, et al. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy, 2017, 41: 417–425

    CAS  Article  Google Scholar 

  33. 33

    Zhang X, Li X, Li R, et al. Highly active core-shell carbon/NiCo2O4 double microtubes for efficient oxygen evolution reaction: Ultra-low overpotential and superior cycling stability. Small, 2019, 15: 1903297

    CAS  Article  Google Scholar 

  34. 34

    Zhang R, Wang X, Yu S, et al. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater, 2017, 29: 1605502

    Article  CAS  Google Scholar 

  35. 35

    Qian Q, Li Y, Liu Y, et al. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv Mater, 2019, 31: 1901139

    Article  CAS  Google Scholar 

  36. 36

    Chen Z, Zhao H, Zhang J, et al. IrNi nanoparticle-decorated flower-shaped NiCo2O4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction. Sci China Mater, 2017, 60: 119–130

    CAS  Article  Google Scholar 

  37. 37

    Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun, 2017, 8: 15341

    CAS  Article  Google Scholar 

  38. 38

    Shen JQ, Liao PQ, Zhou DD, et al. Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc, 2017, 139: 1778–1781

    CAS  Article  Google Scholar 

  39. 39

    Lu JN, Liu J, Dong LZ, et al. Exploring the influence of halogen coordination effect of stable bimetallic MOFs on oxygen evolution reaction. Chem Eur J, 2019, 25: 15830–15836

    CAS  Article  Google Scholar 

  40. 40

    Jiang J, Huang L, Liu X, et al. Bioinspired cobalt-citrate metal-organic framework as an efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces, 2017, 9: 7193–7201

    CAS  Article  Google Scholar 

  41. 41

    Mao FF, Hu CL, Xu X, et al. Bi(IO3)F2: The first metal iodate fluoride with a very strong second harmonic generation effect. Angew Chem Int Ed, 2017, 56: 2151–2155

    CAS  Article  Google Scholar 

  42. 42

    Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346: 1356–1359

    CAS  Article  Google Scholar 

  43. 43

    Zhong KL, Qian MY. A novel one-dimensional CoII coordination polymer: catena-poly[[hexaaquacobalt(II)] [[diaquabis(sulfato-kO) cobalt(II)]-µ-4,4′-bipyridine-k2N:N′] [[triaqua(sulfato-kO)cobalt (II)]-µ-4,4′-bipyridine-k2N:N′]]. Acta Crystlogr C Cryst Struct Commun, 2012, 68: m265–m268

    CAS  Article  Google Scholar 

  44. 44

    Ju S, Liu Y, Chen H, et al. In situ surface chemistry engineering of cobalt-sulfide nanosheets for improved oxygen evolution activity. ACS Appl Energy Mater, 2019, 2: 4439–4449

    CAS  Article  Google Scholar 

  45. 45

    Wang X, Fang J, Liu X, et al. Converting biomass into efficient oxygen reduction reaction catalysts for proton exchange membrane fuel cells. Sci China Mater, 2020, 63: 524–532

    CAS  Article  Google Scholar 

  46. 46

    Zhu R, Ding J, Xu Y, et al. π-Conjugated molecule boosts metal-organic frameworks as efficient oxygen evolution reaction catalysts. Small, 2018, 14: 1803576

    Article  CAS  Google Scholar 

  47. 47

    Liu CS, Zhang ZH, Chen M, et al. Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. Chem Commun, 2017, 53: 3941–3944

    CAS  Article  Google Scholar 

  48. 48

    Qiu B, Cai L, Wang Y, et al. Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv Funct Mater, 2018, 28: 1706008

    Article  CAS  Google Scholar 

  49. 49

    Staszak-Jirkovský J, Malliakas CD, Lopes PP, et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater, 2016, 15: 197–203

    Article  CAS  Google Scholar 

  50. 50

    Feng X, Xing W, Song L, et al.In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J Mater Chem A, 2014, 2: 13299–13308

    CAS  Article  Google Scholar 

  51. 51

    Zhang R, Russo PA, Buzanich AG, et al. Hybrid organic-inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts. Adv Funct Mater, 2017, 27: 1703158

    Article  CAS  Google Scholar 

  52. 52

    Favaro M, Drisdell WS, Marcus MA, et al. An operando investigation of (Ni-Fe-Co-Ce)Ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal, 2017, 7: 1248–1258

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1904215, 21671170 and 21875207), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), the Program for New Century Excellent Talents of the University in China (NCET-13-0645), the Six Talent Plan (2015-XCL-030) and Qinglan Project. We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions and the technical support we received from the Testing Center of Yangzhou University. We also acknowledge the support from the postdoctoral fund of Yangzhou University.

Author information

Affiliations

Authors

Contributions

Pang H designed this study and supervised the experimental work. Bai Y performed the synthesis and characterizations. Zhang G, Zheng S and Li Q performed the characterizations; Bai Y wrote the paper with support from Pang H and Xu Q. All authors contributed to the general discussion.

Corresponding author

Correspondence to Huan Pang 庞欢.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Yang Bai received his PhD degree in inorganic chemistry from Nanjing University. After working at the R&D Department of Yangnong Chemical, he joined Prof. Huan Pang’s group as a postdoctoral fellow in Yangzhou University. His research is focused on the functional nanomaterials for electrochemical applications.

Huan Pang received his PhD degree from Nanjing University in 2011. He is now a university distinguished professor at Yangzhou University and Young Changjiang Scholars of the Ministry of Education. He is a member in the editorial board of FlatChem, young editorial board member of Chinese Journal of Inorganic Chemistry, and a managing editor of EnergyChem. His research interests include the development of inorganic nanostructures and their applications in nanoelectrochemistry focused on energy devices.

Supplementary information for

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhang, G., Zheng, S. et al. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci. China Mater. (2020). https://doi.org/10.1007/s40843-020-1342-2

Download citation

Keywords

  • metal-organic framework
  • bimetallic MOF nanoplate
  • electrocatalysis
  • oxygen evolution reaction