Advertisement

Science China Materials

, Volume 62, Issue 5, pp 611–623 | Cite as

Recent advances in micro detectors for micro gas chromatography

  • Hemi Qu (屈贺幂)
  • Xuexin Duan (段学欣)Email author
Review
  • 197 Downloads

Abstract

Micro gas chromatography (μGC) has been continuously gaining attention since the last century owing to multiple favorable characteristics, such as its small size, low power consumption and minimal production and maintenance costs. μGC has the potential to provide practical solutions to emerging analytical challenges in security, health, and environment. In this review, we summarize recent advances in micro detectors for μGC, including the study of the miniaturization of conventional detectors and the development of novel detectors for μGC chromatography.

Keywords

micro detector gas sensor micro gas chromatography micro-electro-mechanical system 

可用于微型气相色谱仪的微型检测器研究进展

可用于微型气相色谱仪的微型检测器研究进展

近年来, 随着安全、环境、医疗卫生等领域现场分析需求的不断增长, 分析仪器的微型化研究也日益迫切与重要. 微型气相色谱仪 具有体积小、功耗低及制作和维护成本低等诸多优点, 被认为在提供有效的现场气体分析解决方案方面具有巨大潜力. 自上世纪以来, 该 领域研究一直受到研究人员的广泛关注. 在本文中, 我们将首先简要介绍微型气相色谱仪, 然后着重对可用于微型气相色谱的微型检测器 的最新研究进展进行总结. 这些进展包括常规检测器的小型化研究和新型微气相色谱检测器的研究.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (61674114, 91743110 and 21861132001), the National Key R&D Program of China (2017YFF0204600), Tianjin Applied Basic Research and Advanced Technology (17JCJQJC43600), the Foundation for Talent Scientists of Nanchang Institute for Micro-technology of Tianjin University and the 111 Project (B07014, B12015).

References

  1. 1.
    Citti C, Braghiroli D, Vandelli MA, et al. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J Pharmaceutical BioMed Anal, 2018, 147: 565–579CrossRefGoogle Scholar
  2. 2.
    Petrarca MH, Godoy HT. Gas chromatography–mass spectrometry determination of polycyclic aromatic hydrocarbons in baby food using QuEChERS combined with low-density solvent dispersive liquid–liquid microextraction. Food Chem, 2018, 257: 44–52CrossRefGoogle Scholar
  3. 3.
    Ohira SI, Toda K. Micro gas analyzers for environmental and medical applications. Anal Chim Acta, 2008, 619: 143–156CrossRefGoogle Scholar
  4. 4.
    Oetjen K, Thomas L. Volatile and semi-volatile organic compound patterns in flowback waters from fracturing sites within the Marcellus Shale. Environ Earth Sci, 2016, 75: 1043CrossRefGoogle Scholar
  5. 5.
    Kanamori-Kataoka M, Seto Y. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption–gas chromatography/mass spectrometric analysis. J Chromatography A, 2015, 1410: 19–27CrossRefGoogle Scholar
  6. 6.
    Callol-Sanchez L, Munoz-Lucas MA, Gomez-Martin O, et al. Observation of nonanoic acid and aldehydes in exhaled breath of patients with lung cancer. J Breath Res, 2017, 11: 026004CrossRefGoogle Scholar
  7. 7.
    Bae B, Kim J, Yeom J, et al. In Development of a portable gas analyzer using a micro-gas chromatograph/flame ionization detector (micro-GC/FID) for NASA’S environmental missions, 42nd International Conference on Environmental Systems 2012Google Scholar
  8. 8.
    Terry SC, Jerman JH, Angell JB. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices, 1979, 26: 1880–1886CrossRefGoogle Scholar
  9. 9.
    Sage E, Brenac A, Alava T, et al. Neutral particle mass spectro- metry with nanomechanical systems. Nat Commun, 2015, 6: 6482CrossRefGoogle Scholar
  10. 10.
    de Mello A. On-chip chromatography: The last twenty years. Lab Chip, 2002, 2: 48N–54NCrossRefGoogle Scholar
  11. 11.
    Lewis KL, Lianyong Su KL, Hawkridge FM, et al. Immobilization of cytochrome c oxidase into electrode-supported lipid bilayer membranes for in vitro cytochrome c sensing. IEEE Sensor J, 2006, 6: 420–427CrossRefGoogle Scholar
  12. 12.
    Haghighi F, Talebpour Z, Sanati-Nezhad A. Through the years with on-a-chip gas chromatography: a review. Lab Chip, 2015, 15: 2559–2575CrossRefGoogle Scholar
  13. 13.
    Azzouz I, Marty F, Bourouina T. In recent advances in micro-gas chromatography—the opportunities and the challenges, 2017 Symposium on Design, Test, Integration and Packaging of MEMS/ MOEMS (DTIP), 29 May–1 June 2017, 2017, pp 1–5Google Scholar
  14. 14.
    Ghosh A, Vilorio CR, Hawkins AR, et al. Microchip gas chromatography columns, interfacing and performance. Talanta, 2018, 188: 463–492CrossRefGoogle Scholar
  15. 15.
    Robert LG, Eugene FB, Modern Practice of gas chromatography. York: John Wiley & Sons, 2004, 227–338Google Scholar
  16. 16.
    Kuipers W, Müller J. Characterization of a microelectromechanical systems-based counter-current flame ionization detector. J Chromatography A, 2011, 1218: 1891–1898CrossRefGoogle Scholar
  17. 17.
    Kuipers W, Müller J. Sensitivity of a planar micro-flame ionization detector. Talanta, 2010, 82: 1674–1679CrossRefGoogle Scholar
  18. 18.
    Kim J, Bae B, Hammonds J, et al. Development of a micro-flame ionization detector using a diffusion flame. Sensor Actuat B-Chem, 2012, 168: 111–117CrossRefGoogle Scholar
  19. 19.
    de Graaf G, Abarca Prouza A, Ghaderi M, et al. Micro thermal conductivity detector with flow compensation using a dual MEMS device. Sensor Actuat A-Phys, 2016, 249: 186–198CrossRefGoogle Scholar
  20. 20.
    Cruz D, Chang J, Showalter S, et al. Microfabricated thermal conductivity detector for the micro-ChemLab™. Sensor Actuators B-Chem, 2007, 121: 414–422CrossRefGoogle Scholar
  21. 21.
    Sun J, Cui D, Chen X, et al. Design, modeling, microfabrication and characterization of novel micro thermal conductivity detector. Sensor Actuat B-Chem, 2011, 160: 936–941CrossRefGoogle Scholar
  22. 22.
    Sun JH, Cui DF, Chen X, et al. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis. Rev Sci Instruments, 2013, 84: 025001CrossRefGoogle Scholar
  23. 23.
    Portable GC Agilent 490 (https://doi.org/www.agilent.com/), Micro GC Fusion® Gas Analyzer (https://doi.org/www.inficon.com/)
  24. 24.
    Kaanta BC, Chen H, Zhang X. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector. J Micromech Microeng, 2010, 20: 055016CrossRefGoogle Scholar
  25. 25.
    Narayanan S, Alfeeli B, Agah M. A micro gas chromatography chip with an embedded non-cascaded thermal conductivity detector. Procedia Eng, 2010, 5: 29–32CrossRefGoogle Scholar
  26. 26.
    Narayanan S, Alfeeli B, Agah M. Two-port static coated micro gas chromatography column with an embedded thermal conductivity detector. IEEE Sensor J, 2012, 12: 1893–1900CrossRefGoogle Scholar
  27. 27.
    Jian RS, Huang YS, Lai SL, et al. Compact instrumentation of a µ- GC for real time analysis of sub-ppb VOC mixtures. Microchem J, 2013, 108: 161–167CrossRefGoogle Scholar
  28. 28.
    Lee J, Zhou M, Zhu H, et al. In situ calibration of micro-photoionization detectors in a multi-dimensional micro-gas chromatography system. Analyst, 2016, 141: 4100–4107CrossRefGoogle Scholar
  29. 29.
    Lee J, Zhou M, Zhu H, et al. Fully automated portable comprehensive 2-dimensional gas chromatography device. Anal Chem, 2016, 88: 10266–10274CrossRefGoogle Scholar
  30. 30.
    Pang W, Zhao H, Kim ES, et al. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab Chip, 2012, 12: 29–44CrossRefGoogle Scholar
  31. 31.
    Z-Nose https://doi.org/www.estcal.com/ Available at 2018.9.4
  32. 32.
    Chang Y, Hui Z, Wang X, et al. Dual-mode gas sensor composed of a silicon nanoribbon field effect transistor and a bulk acoustic wave resonator: a case study in freons. Sensors, 2018, 18: 343CrossRefGoogle Scholar
  33. 33.
    Liu W, Qu H, Hu J, et al. A highly sensitive humidity sensor based on ultrahigh-frequency microelectromechanical resonator coated with nano-assembled polyelectrolyte thin films. Micromachines, 2017, 8: 116CrossRefGoogle Scholar
  34. 34.
    Chang Y, Tang N, Qu H, et al. Detection of volatile organic compounds by self-assembled monolayer coated sensor array with concentration-independent fingerprints. Sci Rep, 2016, 6: 23970CrossRefGoogle Scholar
  35. 35.
    Lu Y, Chang Y, Tang N, et al. Detection of volatile organic compounds using microfabricated resonator array functionalized with supramolecular monolayers. ACS Appl Mater Interfaces, 2015, 7: 17893–17903CrossRefGoogle Scholar
  36. 36.
    Wang YW, Ao CY, Hui ZP, et al. In film bulk acoustic resonator based gas sensor: A sensitive detector for gas chromatography, TRANSDUCERS 2017—19th International Conference on Solid- State Sensors, Actuators and Microsystems, 2017, pp 1471–1474Google Scholar
  37. 37.
    Hu J, Qu H, Chang Y, et al. Miniaturized polymer coated film bulk acoustic wave resonator sensor array for quantitative gas chromatographic analysis. Sensor Actuat B-Chem, 2018, 274: 419–426CrossRefGoogle Scholar
  38. 38.
    Yang YT, Callegari C, Feng XL, et al. Zeptogram-scale nanomechanical mass sensing. Nano Lett, 2006, 6: 583–586CrossRefGoogle Scholar
  39. 39.
    Li M, Myers EB, Tang HX, et al. Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis. Nano Lett, 2010, 10: 3899–3903CrossRefGoogle Scholar
  40. 40.
    Bargatin I, Myers EB, Aldridge JS, et al. Large-scale integration of nanoelectromechanical systems for gas sensing applications. Nano Lett, 2012, 12: 1269–1274CrossRefGoogle Scholar
  41. 41.
    Martin O, Gouttenoire V, Villard P, et al. Modeling and design of a fully integrated gas analyzer using a µGC and NEMS sensors. Sensor Actuat B-Chem, 2014, 194: 220–228CrossRefGoogle Scholar
  42. 42.
    Narayanan S, Rice G, Agah M. A micro-discharge photoionization detector for micro-gas chromatography. Microchim Acta, 2014, 181: 493–499CrossRefGoogle Scholar
  43. 43.
    Narayanan S, Rice G, Agah M. Characterization of a micro-helium discharge detector for gas chromatography. Sensor Actuat BChem, 2015, 206: 190–197CrossRefGoogle Scholar
  44. 44.
    Akbar M, Shakeel H, Agah M. GC-on-chip: integrated column and photoionization detector. Lab Chip, 2015, 15: 1748–1758CrossRefGoogle Scholar
  45. 45.
    Zhu H, Zhou M, Lee J, et al. Low-power miniaturized helium dielectric barrier discharge photoionization detectors for highly sensitive vapor detection. Anal Chem, 2016, 88: 8780–8786CrossRefGoogle Scholar
  46. 46.
    Liu J, Sun Y, Howard DJ, et al. Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection. Anal Chem, 2010, 82: 4370–4375CrossRefGoogle Scholar
  47. 47.
    Reddy K, Guo Y, Liu J, et al. On-chip Fabry–Pérot interferometric sensors for micro-gas chromatography detection. Sensor Actuat BChem, 2011, 159: 60–65CrossRefGoogle Scholar
  48. 48.
    Reddy K, Liu J, Oo MKK, et al. Integrated separation columns and Fabry-Pérot sensors for microgas chromatography systems. J Microelectromech Syst, 2013, 22: 1174–1179CrossRefGoogle Scholar
  49. 49.
    Scholten K, Fan X, Zellers ET. A microfabricated optofluidic ring resonator for sensitive, high-speed detection of volatile organic compounds. Lab Chip, 2014, 14: 3873–3880CrossRefGoogle Scholar
  50. 50.
    Scholten K, Collin WR, Fan X, et al. Nanoparticle-coated micro- optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis. Nanoscale, 2015, 7: 9282–9289CrossRefGoogle Scholar
  51. 51.
    Patel SV, Mlsna TE, Fruhberger B, et al. Chemicapacitive microsensors for volatile organic compound detection. Sensor Actuat BChem, 2003, 96: 541–553CrossRefGoogle Scholar
  52. 52.
    Kummer AM, Hierlemann A, Baltes H. Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal Chem, 2004, 76: 2470–2477CrossRefGoogle Scholar
  53. 53.
    Mlsna TE, Cemalovic S, Warburton M, et al. Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sensor Actuat B-Chem, 2006, 116: 192–201CrossRefGoogle Scholar
  54. 54.
  55. 55.
    Fu W, Jiang L, van Geest EP, et al. Sensing at the surface of graphene field-effect transistors. Adv Mater, 2017, 29: 1603610CrossRefGoogle Scholar
  56. 56.
    Kulkarni GS, Reddy K, Zhong Z, et al. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat Commun, 2014, 5: 4376CrossRefGoogle Scholar
  57. 57.
    Sun Z, Liao T, Kou L. Strategies for designing metal oxide nanostructures. Sci China Mater, 2017, 60: 1–24CrossRefGoogle Scholar
  58. 58.
    Zampolli S, Elmi I, Stürmann J, et al. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sensor Actuat B-Chem, 2005, 105: 400–406CrossRefGoogle Scholar
  59. 59.
    Larin A, Womble PC, Dobrokhotov V. Novel highly-integrated mems based solid state detectors for analytical gas chromatography. Sensor Actuat B-Chem, 2018, 256: 1057–1068CrossRefGoogle Scholar
  60. 60.
    Sun J, Geng Z, Xue N, et al. A mini-system integrated with metaloxide- semiconductor sensor and micro-packed gas chromatographic column. Micromachines, 2018, 9: 408CrossRefGoogle Scholar
  61. 61.
    Sklorz A, Janßen S, Lang W. Application of a miniaturised packed gas chromatography column and a SnO2 gas detector for analysis of low molecular weight hydrocarbons with focus on ethylene detection. Sensor Actuat B-Chem, 2013, 180: 43–49CrossRefGoogle Scholar
  62. 62.
    Meng H, Yang W, Yan X, et al. A highly sensitive and fast responsive semiconductor metal oxide detector based on In2O3 nanoparticle film for portable gas chromatograph. Sensor Actuat BChem, 2015, 216: 511–517CrossRefGoogle Scholar
  63. 63.
    Khalid T, White P, De Lacy Costello B, et al. A pilot study combining a GC-sensor device with a statistical model for the identification of bladder cancer from urine headspace. PLoS ONE, 2013, 8: e69602CrossRefGoogle Scholar
  64. 64.
    Gregis G, Sanchez JB, Bezverkhyy I, et al. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sensor Actuat BChem, 2018, 255: 391–400CrossRefGoogle Scholar
  65. 65.
    Cai QY, Zellers ET. Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces. Anal Chem, 2002, 74: 3533–3539CrossRefGoogle Scholar
  66. 66.
    Jian RS, Huang RX, Lu CJ. A micro GC detector array based on chemiresistors employing various surface functionalized monolayer- protected gold nanoparticles. Talanta, 2012, 88: 160–167CrossRefGoogle Scholar
  67. 67.
    Bohrer FI, Covington E, Kurdak Ç, et al. Characterization of dense arrays of chemiresistor vapor sensors with submicrometer features and patterned nanoparticle interface layers. Anal Chem, 2011, 83: 3687–3695CrossRefGoogle Scholar
  68. 68.
    Mu X, Covington E, Rairigh D, et al. CMOS monolithic nanoparticle- coated chemiresistor array for micro-scale gas chromatography. IEEE Sensor J, 2012, 12: 2444–2452CrossRefGoogle Scholar
  69. 69.
    Collin WR, Serrano G, Wright LK, et al. Microfabricated gas chromatograph for rapid, trace-level determinations of gas-phase explosive marker compounds. Anal Chem, 2014, 86: 655–663CrossRefGoogle Scholar
  70. 70.
    Tzeng T, Kuo C, Wang S, et al. A portable micro gas chromatography system for lung cancer associated volatile organic compound detection. IEEE J Solid-St Circ, 2016, 51: 259–272CrossRefGoogle Scholar
  71. 71.
    Kim SK, Burris DR, Chang H, et al. Microfabricated gas chromatograph for on-site determination of trichloroethylene in indoor air arising from vapor intrusion. 1. Field evaluation. Environ Sci Technol, 2012, 46: 6065–6072CrossRefGoogle Scholar
  72. 72.
    Jian M, Wang C, Wang Q, et al. Advanced carbon materials for flexible and wearable sensors. Sci China Mater, 2017, 60: 1026–1062CrossRefGoogle Scholar
  73. 73.
    Lee CY, Sharma R, Radadia AD, et al. On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. Angew Chem Int Ed, 2008, 47: 5018–5021CrossRefGoogle Scholar
  74. 74.
    Salehi-Khojin A, Lin KY, Field CR, et al. Fast carbon nanotube detectors for micro gas chromatographs. Nanoscale, 2011, 3: 3097–3102CrossRefGoogle Scholar
  75. 75.
    Zhang L, Du W, Nautiyal A, et al. Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater, 2018, 61: 303–352CrossRefGoogle Scholar
  76. 76.
    Zheng Z, Gan L, Zhai T. Electrospun nanowire arrays for electronics and optoelectronics. Sci China Mater, 2016, 59: 200–216CrossRefGoogle Scholar
  77. 77.
    Wanekaya AK, Uematsu M, Breimer M, et al. Multicomponent analysis of alcohol vapors using integrated gas chromatography with sensor arrays. Sensor Actuat B-Chem, 2005, 110: 41–48CrossRefGoogle Scholar
  78. 78.
    Pirsa S, Alizadeh N. Nanoporous conducting polypyrrole gas sensor coupled to a gas chromatograph for determination of aromatic hydrocarbons using dispersive liquid–liquid microextraction method. IEEE Sensor J, 2011, 11: 3400–3405CrossRefGoogle Scholar
  79. 79.
    Pirsa S. Design of a portable gas chromatography with a conducting polymer nanocomposite detector device and a method to analyze a gas mixture. J Sep Sci, 2017, 40: 1724–1730CrossRefGoogle Scholar
  80. 80.
    Jiang Y, Tang N, Zhou C, et al. A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale, 2018, 10: 20578–20586CrossRefGoogle Scholar
  81. 81.
    Dziuban JA, Mróz J, Szczygielska M, et al. Portable gas chromatograph with integrated components. Sensor Actuat A-Phys, 2004, 115: 318–330CrossRefGoogle Scholar
  82. 82.
    Qin Y, Gianchandani YB. A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants. Microsyst Nanoeng, 2016, 2: 15049CrossRefGoogle Scholar
  83. 83.

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hemi Qu (屈贺幂)
    • 1
    • 2
    • 3
  • Xuexin Duan (段学欣)
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Precision Measuring Technology & InstrumentsTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjinChina
  3. 3.College of Precision Instrument and Opto-electronics EngineeringTianjin UniversityTianjinChina

Personalised recommendations