Advertisement

Science China Materials

, Volume 62, Issue 5, pp 662–670 | Cite as

Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction

  • Han Lin (林翰)
  • Lisong Chen (陈立松)Email author
  • Xiangyu Lu (逯向雨)
  • Heliang Yao (姚鹤良)
  • Yu Chen (陈雨)Email author
  • Jianlin Shi (施剑林)Email author
Articles

Abstract

MXenes, a new family of multifunctional two dimensional (2D) solid crystals integrating high electroconductivity and rich surface chemistries, are promising candidates for electrolysis, which, however, have rarely been reported. Herein, free-standing ultrathin 2D MXene nanosheets were successfully fabricated from bulky and rigid MAX phase ceramics by liquid exfoliation with HF etching (delamination) and TPAOH intercalation (disintegration). The high oxygen reduction reaction (ORR) performance has been obtained, due to the extremely small thickness of the asfabricated Ti3C2 around 0.5–2.0 nm, equivalent to the dimensions of single-layer or double-layer Ti3C2 nanosheets in thickness. The ORR performance of the obtained Ti3C2 MXene-based catalyst exhibits desirable activity and stability in alkaline media. This study demonstrates the potential of earth-abundant 2D MXenes for constructing high-performance and cost-effective electrocatalysts.

Keywords

MXene titanium carbide electrocatalysis oxygen reduction reaction 

二维MXene相Ti3C2高效氧还原电催化剂的制备和性能研究

摘要

二维MXene材料, 由于具有良好的导电性和丰富的表面化学性质, 在电催化领域具有广泛的应用前景, 但在电催化氧还原领域鲜有 报道. 本文通过HF酸刻蚀和TPAOH插层两步法, 用MAX陶瓷制备了具有二维层状结构的MXene相Ti3C2材料, 并将其用作氧还原电催化 剂. 制备的二维Ti3C2材料厚度为0.5–2.0 nm, 表明该材料的层数为1~2层. CV、LSV、RRDE等测试表明, 二维Ti3C2材料具有良好的ORR性 能和稳定性.

Notes

Acknowledgement

This work was financially supported by the National Key R&D Program of China (2016YFA0203700), the National Natural Science Foundation of China (51702099, 51672303 and 51722211), the Program of Shanghai Academic Research Leader (18XD1404300), Young Elite Scientist Sponsorship Program by CAST (2015QNRC001), and Youth Innovation Promotion Association of the Chinese Academy of Sciences (2013169), Shanghai Sailing Program (17YF1403800), China Postdoctoral Science Foundation funded project (2017M611500), and the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201702SIC).

Supplementary material

40843_2018_9378_MOESM1_ESM.pdf (868 kb)
Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction

References

  1. 1.
    Chen Z, Higgins D, Yu A, et al. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci, 2011, 4: 3167CrossRefGoogle Scholar
  2. 2.
    Jaouen F, Proietti E, Lefèvre M, et al. Recent advances in nonprecious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci, 2011, 4: 114–130CrossRefGoogle Scholar
  3. 3.
    Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764CrossRefGoogle Scholar
  4. 4.
    Wang S, Yu D, Dai L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc, 2011, 133: 5182–5185CrossRefGoogle Scholar
  5. 5.
    Yan D, Guo L, Xie C, et al. N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci China Mater, 2018, 61: 679–685CrossRefGoogle Scholar
  6. 6.
    Xu D, Mu C, Wang B, et al. Fabrication of multifunctional carbon encapsulated Ni@NiO nanocomposites for oxygen reduction, oxygen evolution and lithium-ion battery anode materials. Sci China Mater, 2017, 60: 947–954CrossRefGoogle Scholar
  7. 7.
    Wu S, Zhu Y, Huo Y, et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater, 2017, 60: 654–663CrossRefGoogle Scholar
  8. 8.
    Zeng L, Cui X, Shi J. A facile strategy for ultrasmall Pt NPs being partially-embedded in N-doped carbon nanosheet structure for efficient electrocatalysis. Sci China Mater, 2018, 61: 1557–1566CrossRefGoogle Scholar
  9. 9.
    Wang Y, Tao L, Xiao Z, et al. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv Funct Mater, 2018, 28: 1705356CrossRefGoogle Scholar
  10. 10.
    Dou S, Tao L, Wang R, et al. Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater, 2018, 30: 1705850CrossRefGoogle Scholar
  11. 11.
    Gao G, O’Mullane AP, Du A. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal, 2017, 7: 494–500CrossRefGoogle Scholar
  12. 12.
    Guo Z, Zhou J, Zhu L, et al. MXene: a promising photocatalyst for water splitting. J Mater Chem A, 2016, 4: 11446–11452CrossRefGoogle Scholar
  13. 13.
    Ma TY, Cao JL, Jaroniec M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem Int Ed, 2016, 55: 1138–1142CrossRefGoogle Scholar
  14. 14.
    Pan H. Ultra-high electrochemical catalytic activity of MXenes. Sci Rep, 2016, 6: 32531CrossRefGoogle Scholar
  15. 15.
    Seh ZW, Fredrickson KD, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett, 2016, 1: 589–594CrossRefGoogle Scholar
  16. 16.
    Xie X, Chen S, Ding W, et al. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X=OH, F) nanosheets for oxygen reduction reaction. Chem Commun, 2013, 49: 10112–10114CrossRefGoogle Scholar
  17. 17.
    Peng N, Hu D, Zeng J, et al. Superabsorbent cellulose–clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng, 2016, 4: 7217–7224CrossRefGoogle Scholar
  18. 18.
    Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  19. 19.
    Nicolosi V, Chhowalla M, Kanatzidis MG, et al. Liquid exfoliation of layered materials. Science, 2013, 340: 1226419CrossRefGoogle Scholar
  20. 20.
    Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin twodimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331CrossRefGoogle Scholar
  21. 21.
    Chen Z, Wang Z, Ren J, et al. Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res, 2018, 51: 789–799CrossRefGoogle Scholar
  22. 22.
    Chen Y, Yang K, Jiang B, et al. Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J Mater Chem A, 2017, 5: 8187–8208CrossRefGoogle Scholar
  23. 23.
    Tao H, Gao Y, Talreja N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A, 2017, 5: 7257–7284CrossRefGoogle Scholar
  24. 24.
    Li K, Jiao T, Xing R, et al. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater, 2018, 61: 728–736CrossRefGoogle Scholar
  25. 25.
    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23: 4248–4253CrossRefGoogle Scholar
  26. 26.
    Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098CrossRefGoogle Scholar
  27. 27.
    Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithiumsulfur batteries. Angew Chem Int Ed, 2015, 54: 3907–3911CrossRefGoogle Scholar
  28. 28.
    Mashtalir O, Lukatskaya MR, Zhao MQ, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater, 2015, 27: 3501–3506CrossRefGoogle Scholar
  29. 29.
    Zhao MQ, Xie X, Ren CE, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater, 2017, 29: 1702410CrossRefGoogle Scholar
  30. 30.
    Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive twodimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 3: 78–81Google Scholar
  31. 31.
    Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341: 1502–1505CrossRefGoogle Scholar
  32. 32.
    Zhang CJ, Anasori B, Seral-Ascaso A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater, 2017, 29: 1702678CrossRefGoogle Scholar
  33. 33.
    Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed, 2017, 56: 1825–1829CrossRefGoogle Scholar
  34. 34.
    Kim SJ, Koh HJ, Ren CE, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano, 2018, 12: 986–993CrossRefGoogle Scholar
  35. 35.
    Li N, Chen X, Ong WJ, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 2017, 11: 10825–10833CrossRefGoogle Scholar
  36. 36.
    Liu J, Zhang HB, Sun R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagneticinterference shielding. Adv Mater, 2017, 29: 1702367CrossRefGoogle Scholar
  37. 37.
    Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353: 1137–1140CrossRefGoogle Scholar
  38. 38.
    Lin H, Gao S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc, 2017, 139: 16235–16247CrossRefGoogle Scholar
  39. 39.
    Lin H, Wang X, Yu L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett, 2017, 17: 384–391CrossRefGoogle Scholar
  40. 40.
    Lin H, Wang Y, Gao S, et al. Theranostic 2D tantalum carbide (MXene). Adv Mater, 2018, 30: 1703284CrossRefGoogle Scholar
  41. 41.
    Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv Sci, 2018, 5: 1800518CrossRefGoogle Scholar
  42. 42.
    Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of twodimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8: 11385–11391CrossRefGoogle Scholar
  43. 43.
    Zhou J, Zha X, Chen FY, et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem, 2016, 128: 5092–5097CrossRefGoogle Scholar
  44. 44.
    Wang Y, Zhang D, Peng W, et al. Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochim Acta, 2011, 56: 5754–5758CrossRefGoogle Scholar
  45. 45.
    Mayrhofer KJJ, Strmcnik D, Blizanac BB, et al. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta, 2008, 53: 3181–3188CrossRefGoogle Scholar
  46. 46.
    Ren G, Lu X, Li Y, et al. Porous core–shell Fe3C embedded Ndoped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces, 2016, 8: 4118–4125CrossRefGoogle Scholar
  47. 47.
    Paulus UA, Schmidt TJ, Gasteiger HA, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem, 2001, 495: 134–145CrossRefGoogle Scholar
  48. 48.
    Wu G, More KL, Johnston CM, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011, 332: 443–447CrossRefGoogle Scholar
  49. 49.
    Sun X, Zhang Y, Song P, et al. Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catal, 2013, 3: 1726–1729CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations