Advertisement

Science China Materials

, Volume 62, Issue 5, pp 633–644 | Cite as

Ball-flower-like carbon microspheres via a three-dimensional replication strategy as a high-capacity cathode in lithium–oxygen batteries

  • Liang Xiao (肖亮)Email author
  • Jingyu Yi (易靖宇)
  • Wen Meng (孟文)
  • Shiyao Wang (王诗瑶)
  • Bohua Deng (邓伯华)
  • Jinping Liu (刘金平)Email author
Articles
  • 280 Downloads

Abstract

The robust porous architectures of active materials are highly desired for oxygen electrodes in lithium–oxygen batteries to enable high capacities and excellent reversibility. Herein, we report a novel three-dimensional replication strategy to fabricate three-dimensional architecture of porous carbon for oxygen electrodes in lithium–oxygen batteries. As a demonstration, ball-flower-like carbon microspheres assembled with tortuous hollow carbon nanosheets are successfully prepared by completely replicating the morphology of the nanostructured zinc oxide template and utilizing the polydopamine coating layer as the carbon source. When used as the active material for oxygen electrodes, the three-dimensional porous architecture of the prepared ballflower- like carbon microspheres can accommodate the discharge product lithium peroxide and simultaneously maintain the ions and gas diffusion paths. Moreover, their high degrees of defectiveness by nitrogen doping provide sufficient active sites for oxygen reduction/evolution reaction. Thus the prepared ball-flower-like carbon microspheres demonstrate a high capacity of 9,163.7 mA h g−1 and excellent reversibility. This work presents an effective way to prepare three-dimensional architectures of porous carbon by replicating the controllable nanostructures of transition metal oxide templates for energy storage and conversion applications.

Keywords

three-dimensional replication porous carbon oxygen electrodes lithium–oxygen batteries zinc oxide nanostructure 

锂氧电池高容量正极材料花球状碳微球的三维复刻构筑

Abstract

活性物质和电极的多孔结构设计是实现锂氧电池中氧气电极高容量和良好可逆性的关键措施. 本文报道了一种创新的三维复刻策 略, 并用于设计锂氧电池氧气电极用多孔碳材料的三维结构. 作为一个实例, 采用聚多巴胺包覆层为碳源, 通过完整复制纳米结构氧化锌 模板的形貌, 成功地制备了由扭曲的中空碳纳米片组装而成的花球状碳微球. 作为氧气电极的活性物质, 花球状碳微球的三维多孔结构不 仅能容纳放电产物过氧化锂, 同时也能保持离子和气体的扩散通道. 此外, 氮掺杂引入的高缺陷为氧还原/析出反应提供了充足的活性位 点. 从而, 花球状碳微球表现出高达9163.7 mA h g−1的比容量和优异的可逆性. 本工作呈现了一种用于能源存储和转化的多孔碳材料的三 维结构的有效可控制备方法, 即复制过渡金属氧化物模板的纳米结构.

Notes

Acknowledgement

This work was supported by grants from the National Natural Science Foundation of China (21673169 and 51672205), the National Key R&D Program of China (2016YFA0202602), the Research Start-Up Fund from Wuhan University of Technology, and the Fundamental Research Funds for the Central Universities (WUT: 2017IB005, 2016IVA083).

Supplementary material

40843_2018_9367_MOESM1_ESM.pdf (1.2 mb)
Ball-flower-like carbon microspheres via a three-dimensional replication strategy as a high-capacity cathode in lithium–oxygen batteries

References

  1. 1.
    Lu J, Li L, Park JB, et al. Aprotic and aqueous Li–O2 batteries. Chem Rev, 2014, 114: 5611–5640CrossRefGoogle Scholar
  2. 2.
    Wang L, Zhang Y, Liu Z, et al. Understanding oxygen electrochemistry in aprotic Li–O2 batteries. Green Energy Environ, 2017, 2: 186–203CrossRefGoogle Scholar
  3. 3.
    Feng N, He P, Zhou H. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv Energy Mater, 2016, 6: 1502303CrossRefGoogle Scholar
  4. 4.
    Aurbach D, McCloskey BD, Nazar LF, et al. Advances in understanding mechanisms underpinning lithium–air batteries. Nat Energy, 2016, 1: 16128CrossRefGoogle Scholar
  5. 5.
    Adams BD, Radtke C, Black R, et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ Sci, 2013, 6: 1772–1778CrossRefGoogle Scholar
  6. 6.
    Peng Z, Freunberger SA, Chen Y, et al. A reversible and higherrate Li-O2 battery. Science, 2012, 337: 563–566CrossRefGoogle Scholar
  7. 7.
    Viswanathan V, Thygesen KS, Hummelshøj JS, et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys, 2011, 135: 214704CrossRefGoogle Scholar
  8. 8.
    Liu Y, He P, Zhou H. Rechargeable solid-state Li-air and Li-S batteries: Materials, construction, and challenges. Adv Energy Mater, 2018, 8: 1701602CrossRefGoogle Scholar
  9. 9.
    Song K, Agyeman DA, Jung J, et al. A review of the design strategies for tailored cathode catalyst materials in rechargeable Li- O2 batteries. Isr J Chem, 2015, 55: 458–471CrossRefGoogle Scholar
  10. 10.
    Ma Z, Yuan X, Li L, et al. A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ Sci, 2015, 8: 2144–2198CrossRefGoogle Scholar
  11. 11.
    Yin YB, Xu JJ, Liu QC, et al. Macroporous interconnected hollow carbon nanofibers inspired by golden-toad eggs toward a binderfree, high-rate, and flexible electrode. Adv Mater, 2016, 28: 7494–7500CrossRefGoogle Scholar
  12. 12.
    Guo Z, Zhou D, Dong XL, et al. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O2 batteries. Adv Mater, 2013, 25: 5668–5672CrossRefGoogle Scholar
  13. 13.
    Shu C, Li B, Zhang B, et al. Hierarchical nitrogen-doped graphene/carbon nanotube composite cathode for lithium-oxygen batteries. ChemSusChem, 2015, 8: 3973–3976CrossRefGoogle Scholar
  14. 14.
    Sun B, Huang X, Chen S, et al. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium–oxygen batteries. Nano Lett, 2014, 14: 3145–3152CrossRefGoogle Scholar
  15. 15.
    Lu J, Lei Y, Lau KC, et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat Commun, 2013, 4: 2383CrossRefGoogle Scholar
  16. 16.
    Franco AA, Xue KH. Carbon-based electrodes for lithium air batteries: Scientific and technological challenges from a modeling perspective. ECS J Solid State Sci Technol, 2013, 2: M3084–M3100CrossRefGoogle Scholar
  17. 17.
    Tran C, Yang XQ, Qu D. Investigation of the gas-diffusionelectrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J Power Sources, 2010, 195: 2057–2063CrossRefGoogle Scholar
  18. 18.
    Yang X, He P, Xia Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun, 2009, 11: 1127–1130CrossRefGoogle Scholar
  19. 19.
    Nie H, Zhang H, Zhang Y, et al. Nitrogen enriched mesoporous carbon as a high capacity cathode in lithium–oxygen batteries. Nanoscale, 2013, 5: 8484–8487CrossRefGoogle Scholar
  20. 20.
    Kang J, Li OL, Saito N. Hierarchical meso–macro structure porous carbon black as electrode materials in Li–air battery. J Power Sources, 2014, 261: 156–161CrossRefGoogle Scholar
  21. 21.
    Xiao J, Mei D, Li X, et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett, 2011, 11: 5071–5078CrossRefGoogle Scholar
  22. 22.
    Wang ZL, Xu D, Xu JJ, et al. Graphene oxide gel-derived, freestanding, hierarchically porous carbon for high-capacity and highrate rechargeable Li-O2 batteries. Adv Funct Mater, 2012, 22: 3699–3705CrossRefGoogle Scholar
  23. 23.
    Lin Y, Moitoso B, Martinez-Martinez C, et al. Ultrahigh-capacity lithium–oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Lett, 2017, 17: 3252–3260CrossRefGoogle Scholar
  24. 24.
    McCloskey BD, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett, 2012, 3: 997–1001CrossRefGoogle Scholar
  25. 25.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z, et al. The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc, 2013, 135: 494–500CrossRefGoogle Scholar
  26. 26.
    Yao X, Dong Q, Cheng Q, et al. Why do lithium-oxygen batteries fail: Parasitic chemical reactions and their synergistic effect. Angew Chem Int Ed, 2016, 55: 11344–11353CrossRefGoogle Scholar
  27. 27.
    Sun B, Chen S, Liu H, et al. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries. Adv Funct Mater, 2015, 25: 4436–4444CrossRefGoogle Scholar
  28. 28.
    Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 2014, 114: 5057–5115CrossRefGoogle Scholar
  29. 29.
    Xiao L, Mei D, Cao M, et al. Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries. J Alloys Compd, 2015, 627: 455–462CrossRefGoogle Scholar
  30. 30.
    Kuo CL, Kuo TJ, Huang MH. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J Phys Chem B, 2005, 109: 20115–20121CrossRefGoogle Scholar
  31. 31.
    Kaneko K. Determination of pore size and pore size distribution. J Membrane Sci, 1994, 96: 59–89CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Zhang H, Li J, et al. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery. J Power Sources, 2013, 240: 390–396CrossRefGoogle Scholar
  33. 33.
    Horstmann B, Gallant B, Mitchell R, et al. Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J Phys Chem Lett, 2013, 4: 4217–4222CrossRefGoogle Scholar
  34. 34.
    Kichambare P, Kumar J, Rodrigues S, et al. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J Power Sources, 2011, 196: 3310–3316CrossRefGoogle Scholar
  35. 35.
    Xie J, Yao X, Cheng Q, et al. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew Chem Int Ed, 2015, 54: 4299–4303CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Xiao (肖亮)
    • 1
    Email author
  • Jingyu Yi (易靖宇)
    • 1
  • Wen Meng (孟文)
    • 1
  • Shiyao Wang (王诗瑶)
    • 1
  • Bohua Deng (邓伯华)
    • 1
  • Jinping Liu (刘金平)
    • 1
    • 2
    Email author
  1. 1.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations