Science China Materials

, Volume 62, Issue 5, pp 745–750 | Cite as

Fast three-dimensional assembly of MoS2 inspired by the gelation of graphene oxide

  • Yaqian Deng (邓亚茜)
  • Chong Luo (罗冲)
  • Jun Zhang (张俊)
  • Dong Qiu (邱东)
  • Tengfei Cao (曹腾飞)
  • Qiaowei Lin (林乔伟)
  • Wei Lv (吕伟)Email author
  • Feiyu Kang (康飞宇)
  • Quan-Hong Yang (杨全红)Email author

二维材料的快速三维自组装: 从氧化石墨烯到二硫化钼


本工作借助1,4-丁二醇二缩水甘油醚(BDGE)与氧化石墨烯上羧基的相互作用, 实现了氧化石墨烯的快速三维组装. 基于此方法, 我们通过表面活性剂分散其他二维材料并实现材料表面官能化, 借助于这些表面官能团与BDGE的相互作用, 发展出一种普适的二维材料快速三维自组装方法. 以二硫化钼为例, 组装形成的三维结构显著提高了表面利用率, 极大地改善了其作为钠离子电池负极材料的电化学性能.



This work was supported by the National Natural Science Foundation of China (51772164 and U1601206), Guangdong Natural Science Funds for Distinguished Young Scholar (2017B030306006), Guangdong Special Support Program (2017TQ04C664), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111) and Shenzhen Technical Plan Project (JCYJ20170412171630020 and JCYJ20170412171359175).

Supplementary material

40843_2018_9363_MOESM1_ESM.pdf (2.5 mb)
Fast three-dimensional assembly of MoS2 inspired by the gelation of graphene oxide

Supplementary material, approximately 4.17 MB.

Supplementary material, approximately 3.05 MB.


  1. 1.
    Bonaccorso F, Colombo L, Yu G, et al. Graphene, related twodimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347: 1246501CrossRefGoogle Scholar
  2. 2.
    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, et al. 2D materials: to graphene and beyond. Nanoscale, 2011, 3: 20–30CrossRefGoogle Scholar
  3. 3.
    Soundiraraju B, George BK. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano, 2017, 11: 8892–8900CrossRefGoogle Scholar
  4. 4.
    Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113: 3766–3798CrossRefGoogle Scholar
  5. 5.
    Wang R, Wang S, Jin D, et al. Engineering layer structure of MoS2- graphene composites with robust and fast lithium storage for highperformance Li-ion capacitors. Energy Storage Mater, 2017, 9: 195–205CrossRefGoogle Scholar
  6. 6.
    Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater, 2016, 2: 107–138CrossRefGoogle Scholar
  7. 7.
    Li D, Müller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotech, 2008, 3: 101–105CrossRefGoogle Scholar
  8. 8.
    Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240CrossRefGoogle Scholar
  9. 9.
    Lv W, Zhang C, Li Z, et al. Self-assembled 3D graphene monolith from solution. J Phys Chem Lett, 2015, 6: 658–668CrossRefGoogle Scholar
  10. 10.
    Bai H, Li C, Wang X, et al. On the gelation of graphene oxide. J Phys Chem C, 2011, 115: 5545–5551CrossRefGoogle Scholar
  11. 11.
    Liu Z, Lau SP, Yan F. Functionalized graphene and other twodimensional materials for photovoltaic devices: device design and processing. Chem Soc Rev, 2015, 44: 5638–5679CrossRefGoogle Scholar
  12. 12.
    Chhowalla M, Shin HS, Eda G, et al. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275CrossRefGoogle Scholar
  13. 13.
    Zhang X, Lai Z, Tan C, et al. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew Chem Int Ed, 2016, 55: 8816–8838CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Xu Z, Lu B. Strongly coupled MoS2–3D graphene materials for ultrafast charge slow discharge LIBs and water splitting applications. Energy Storage Mater, 2016, 4: 84–91CrossRefGoogle Scholar
  15. 15.
    Yun Q, Lu Q, Zhang X, et al. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew Chem Int Ed, 2018, 57: 626–646CrossRefGoogle Scholar
  16. 16.
    Wang P, Tian J, Hu J, et al. Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano, 2017, 11: 7390–7400CrossRefGoogle Scholar
  17. 17.
    Huang C, Bai H, Li C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chem Commun, 2011, 47: 4962–4964CrossRefGoogle Scholar
  18. 18.
    Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl Chem, 2015, 87: 1051–1069CrossRefGoogle Scholar
  19. 19.
    Pei S, Cheng HM. The reduction of graphene oxide. Carbon, 2012, 50: 3210–3228CrossRefGoogle Scholar
  20. 20.
    Jiang H, Ren D, Wang H, et al. 2D monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater, 2015, 27: 3687–3695CrossRefGoogle Scholar
  21. 21.
    Liu Y, He X, Hanlon D, et al. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/ areal capacity sodium-ion batteries. ACS Nano, 2016, 10: 8821–8828CrossRefGoogle Scholar
  22. 22.
    Choi SH, Ko YN, Lee JK, et al. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater, 2015, 25: 1780–1788CrossRefGoogle Scholar
  23. 23.
    David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano, 2014, 8: 1759–1770CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaqian Deng (邓亚茜)
    • 1
    • 2
  • Chong Luo (罗冲)
    • 1
    • 2
  • Jun Zhang (张俊)
    • 4
  • Dong Qiu (邱东)
    • 1
    • 2
  • Tengfei Cao (曹腾飞)
    • 4
  • Qiaowei Lin (林乔伟)
    • 1
    • 2
  • Wei Lv (吕伟)
    • 1
    Email author
  • Feiyu Kang (康飞宇)
    • 1
    • 2
  • Quan-Hong Yang (杨全红)
    • 3
    Email author
  1. 1.Engineering Laboratory for Functionalized Carbon Materials and Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.Laboratory of Advanced Materials, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  3. 3.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  4. 4.Tsinghua-Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhenChina

Personalised recommendations