Science China Materials

, Volume 62, Issue 5, pp 653–661 | Cite as

Improved photoelectric properties of BiOBr nanoplates by co-modifying SnO2 and Ag to promote photoelectrons trapped by adsorbed O2

  • Hao Wang (王皓)
  • Yang Qu (曲阳)Email author
  • Zhikun Xu (徐志堃)
  • Xuliang Zhang (张旭良)
  • Xinxin Zhang (张鑫鑫)
  • Fan Yang (杨帆)
  • Liqiang Jing (井立强)Email author


It is highly desired to improve the photoelectric property of nanosized BiOBr by promoting the photogenerated charge transfer and separation. Herein, SnO2 and Ag comodified BiOBr nanocomposites (Ag-SO-BOB) have been prepared through a simple one-pot hydrothermal method. Surface photovoltage response of BiOBr nanoplates has 4.1- time enhancement after being modified with SnO2 nanoparticles. Transient-state surface photovoltage (TS-SPV) and the atmosphere-controlled steady-state surface photovoltage spectroscopy (AC-SPS) confirmed that this exceptional enhancement of the photovoltage response can be ascribed to the coupled SnO2 acting as platform for accepting the photoelectrons from BiOBr so as to prolong the lifetime and enhance charge separation. Remarkably, the surface photovoltage response can be further enhanced by synchronously introducing Ag nanoparticles, which is up to 15.4-times enhancement compared with bulk BiOBr nanoplates. The enhancement can be attributed to the improved O2 adsorption by introducing Ag to further enhance charge separation. Finally, the synergistic effect of SnO2 and Ag co-modification enhances the surface photovoltage response due to the enhanced charge separation and promoted O2 adsorption, which is also confirmed through photoelectrochemistry and photocatalytic experiment.


Ag-SnO2-BiOBr photoelectron trapping O2 adsorption charge separation surface photovoltage response 



针对BiOBr纳米材料导带位置偏正导致的可见光生电子寿命短、电荷分离差和氧气捕获能力差等关键科学问题, 本文通过简单的一步水热法合成高光伏响应的Ag-SnO2-BiOBr复合纳米材料. 通过气氛控制表面光电压、瞬态光电压技术和光电化学实验等深入揭示了 Ag-SnO2-BiOBr复合纳米材料的电荷转移和分离机制. 结果表明, SnO2可作为适当能量水平的可见光生电子接收平台, 有效延长光生电子 的寿命、提高其利用率并促进光生电荷分离. 共修饰Ag有效改善了SnO2和BiOBr的表面氧吸附能力、进一步促进了BiOBr可见光生电子的有效分离, 因此表现出高的光伏响应, 分别是SnO2/BiOBr、Ag/BiOBr和BiOBr的3.8、1.3和15.4倍. 本工作对深入研究含铋半导体材料 的光电特性和电荷分离机理具有重要的意义, 为后续设计光伏传感等光电器件提供实验和理论依据.



The authors are grateful for financial support from the National Natural Science Foundation of China (U1401245, 21501052 and 91622119), the Program for Innovative Research Team in Chinese Universities (IRT1237), China Postdoctoral Science Foundation (2015M570304), the Special Funding for Postdoctoral of Heilongjiang Province (LBH-TZ06019) and UNPYSCT-2016173.

Supplementary material

40843_2018_9362_MOESM1_ESM.pdf (1.5 mb)
Synergistic effect of SnO2 platform and Ag activator for improving the photoelectric property of BiOBr nanoplates via modulating photoelectrons and activating O2


  1. 1.
    Koppens FHL, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9: 780–793CrossRefGoogle Scholar
  2. 2.
    Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712CrossRefGoogle Scholar
  3. 3.
    Zhang X, Zhang L, Xie T, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C, 2009, 113: 7371–7378CrossRefGoogle Scholar
  4. 4.
    Guo Z, Wan Y, Yang M, et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, 2017, 356: 59–62CrossRefGoogle Scholar
  5. 5.
    Li J, Cai L, Shang J, et al. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv Mater, 2016, 28: 4059–4064CrossRefGoogle Scholar
  6. 6.
    Zhang L, Wang W, Chen Z, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem, 2007, 17: 2526–2532CrossRefGoogle Scholar
  7. 7.
    Li J, Zhan G, Yu Y, et al. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat Commun, 2016, 7: 11480CrossRefGoogle Scholar
  8. 8.
    Dong F, Li Q, Sun Y, et al. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal, 2014, 4: 4341–4350CrossRefGoogle Scholar
  9. 9.
    Kunioku H, Higashi M, Tomita O, et al. Strong hybridization between Bi-6s and O-2p orbitals in Sillén–Aurivillius perovskite Bi4MO8X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation. J Mater Chem A, 2018, 6: 3100–3107CrossRefGoogle Scholar
  10. 10.
    Li H, Shang J, Ai Z, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc, 2015, 137: 6393–6399CrossRefGoogle Scholar
  11. 11.
    Guan M, Xiao C, Zhang J, et al. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc, 2013, 135: 10411–10417CrossRefGoogle Scholar
  12. 12.
    Ganose AM, Cuff M, Butler KT, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem Mater, 2016, 28: 1980–1984CrossRefGoogle Scholar
  13. 13.
    Humayun M, Zada A, Li Z, et al. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl Catal B-Environ, 2016, 180: 219–226CrossRefGoogle Scholar
  14. 14.
    Bian J, Qu Y, Zhang X, et al. Dimension-matched plasmonic Au/TiO2/BiVO4 nanocomposites as efficient wide-visible-light photocatalysts to convert CO2 and mechanistic insights. J Mater Chem A, 2018, 6: 11838–11845CrossRefGoogle Scholar
  15. 15.
    Sun N, Qu Y, Chen S, et al. Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi2O3 coupled with phosphate-bridged nano-SnO2. Environ Sci-Nano, 2017, 4: 1147–1154CrossRefGoogle Scholar
  16. 16.
    Takai A, Kamat PV. Capture, store, and discharge. shuttling photogenerated electrons across TiO2–silver interface. ACS Nano, 2011, 5: 7369–7376CrossRefGoogle Scholar
  17. 17.
    Li H, Yu H, Quan X, et al. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-g-C3 N4 (metal = Cu, Ag, Au). ACS Appl Mater Interfaces, 2016, 8: 2111–2119CrossRefGoogle Scholar
  18. 18.
    Hirakawa T, Kamat PV. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc, 2005, 127: 3928–3934CrossRefGoogle Scholar
  19. 19.
    Kim SM, Jo YG, Lee MH, et al. The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction. Electrochim Acta, 2017, 233: 123–133CrossRefGoogle Scholar
  20. 20.
    Kochuveedu ST, Jang YH, Kim DH. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev, 2013, 42: 8467–8493CrossRefGoogle Scholar
  21. 21.
    Raziq F, Qu Y, Humayun M, et al. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl Catal B-Environ, 2017, 201: 486–494CrossRefGoogle Scholar
  22. 22.
    Li Z, Qu Y, Hu K, et al. Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime. Appl Catal B-Environ, 2017, 203: 355–362CrossRefGoogle Scholar
  23. 23.
    Zhang D, Li J, Wang Q, et al. High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. J Mater Chem A, 2013, 1: 8622–8629CrossRefGoogle Scholar
  24. 24.
    Zhao J, Wei L, Liu J, et al. A sintering-free, nanocrystalline tin oxide electron selective layer for organometal perovskite solar cells. Sci China Mater, 2017, 60: 208–216CrossRefGoogle Scholar
  25. 25.
    Xie M, Fu X, Jing L, et al. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv Energy Mater, 2014, 4: 1300995CrossRefGoogle Scholar
  26. 26.
    Xu D, Bu Q, Wang D, et al. Enhanced photoelectrochemical water oxidation performance by altering the interfacial charge transfer path. Inorg Chem Front, 2017, 4: 1296–1303CrossRefGoogle Scholar
  27. 27.
    Li J, Zhang X, Raziq F, et al. Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping holes with halogeninduced surface polarization and 2,4-dichlorophenol decomposition mechanism. Appl Catal B-Environ, 2017, 218: 60–67CrossRefGoogle Scholar
  28. 28.
    Yu M, Qu Y, Pan K, et al. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4:Er3+/Yb3+ and g-C3N4. Sci China Mater, 2017, 60: 228–238CrossRefGoogle Scholar
  29. 29.
    Liu L, Qi Y, Lu J, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl Catal B-Environ, 2016, 183: 133–141CrossRefGoogle Scholar
  30. 30.
    Dai W, Chen X, Zheng X, et al. Photocatalytic oxidation of CO on TiO2: Chemisorption of O2, CO, and H2. ChemPhysChem, 2009, 10: 411–419CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hao Wang (王皓)
    • 1
  • Yang Qu (曲阳)
    • 1
    Email author
  • Zhikun Xu (徐志堃)
    • 2
  • Xuliang Zhang (张旭良)
    • 1
  • Xinxin Zhang (张鑫鑫)
    • 1
  • Fan Yang (杨帆)
    • 1
  • Liqiang Jing (井立强)
    • 1
    Email author
  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinChina
  2. 2.Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic EngineeringHarbin Normal UniversityHarbinChina

Personalised recommendations