Science China Materials

, Volume 62, Issue 5, pp 690–698 | Cite as

Direct synthesis of parallel doped N-MoP/N-CNT as highly active hydrogen evolution reaction catalyst

  • Juntao Zhang (张俊涛)
  • Rui Sui (眭瑞)
  • Yanrong Xue (薛延荣)
  • Xingdong Wang (王兴栋)
  • Jiajing Pei (裴加景)
  • Xin Liang (梁鑫)Email author
  • Zhongbin Zhuang (庄仲滨)Email author


Doped phosphide is promising in earth-abundant element based catalysts for hydrogen evolution reaction (HER). Here we employ ammonium hypophosphite (NH4H2PO2) to synthesize a novel parallel doped catalyst, nitrogen doped molybdenum phosphide nanoparticles (NPs) supported on nitrogen doped carbon nanotubes (N-MoP/N-CNTs). The NH4H2PO2 as a bifunctional agent severs as both phosphidation agent and nitrogen source, which makes the synthetic route simple and efficient. The as-obtained parallel doped N-MoP/N-CNTs show an overpotential of 103±5 mV at 10 mA cm−2, which is 140 mV lower than that of MoP NPs. The enhanced HER performance is attributed to the electronic effect by doped MoP and CNTs supports. This work provides a facile route to synthesize doped phosphides for the potential applications in hydrogen energy.


bifunctional precursor ammonium hypophosphite nitrogen-doped MoP nitrogen-doped carbon nanotubes hydrogen evolution reaction 



清洁氢能源是未来发展的重要方向, 因此开发高效廉价的析氢材料尤为重要. 掺杂的磷化物作为一种优异的析氢材料得到了广泛的关注. 本文提出了一种将氮原子同时掺杂在磷化物催化剂和载体上的新的合成方法. 在热处理的过程中, 利用次磷酸铵(NH4H2PO2)分解产生的氨和磷化氢气体与前驱体进行反应, 一步得到双掺杂的氮掺杂碳纳米管负载氮掺杂磷化钼催化剂(N-MoP/N-CNT). 该催化剂现出了良好的析氢反应活性, 当电流密度为10 mA cm−2时, 过电势只有103±5 mV, 明显低于MoP纳米颗粒的过电势(243 mV). 催化活性的提升主要来自掺氮带来的电子效应以及协同效应. 该催化剂在电解水产氢方面具有应用前景.



This work was supported by the National Key Research and Development Program of China (2017YFA0206500), the National Natural Science Foundation of China (21671014) and the Fundamental Research Funds for the Central Universities (buctrc201522).

Supplementary material

40843_2018_9360_MOESM1_ESM.pdf (3.6 mb)
Direct synthesis of parallel doped N-MoP/N-CNT as highly active hydrogen evolution reaction catalyst


  1. 1.
    Chow J, Kopp RJ, Portney PR. Energy resources and global development. Science, 2003, 302: 1528–1531CrossRefGoogle Scholar
  2. 2.
    Bockris JO. A hydrogen economy. Science, 1972, 176: 1323CrossRefGoogle Scholar
  3. 3.
    Bockris JOM. The hydrogen economy: Its history. Int J Hydrogen Energy, 2013, 38: 2579–2588CrossRefGoogle Scholar
  4. 4.
    Armaroli N, Balzani V. The future of energy supply: Challenges and opportunities. Angew Chem Int Ed, 2007, 46: 52–66CrossRefGoogle Scholar
  5. 5.
    Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38: 253–278CrossRefGoogle Scholar
  6. 6.
    Luo J, Im JH, Mayer MT, et al. Water photolysis at 12. 3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345: 1593–1596CrossRefGoogle Scholar
  7. 7.
    Nocera DG. The artificial leaf. Acc Chem Res, 2012, 45: 767–776CrossRefGoogle Scholar
  8. 8.
    McCrory CCL, Jung S, Ferrer IM, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc, 2015, 137: 4347–4357CrossRefGoogle Scholar
  9. 9.
    Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23CrossRefGoogle Scholar
  10. 10.
    Yan Y, Xia BY, Xu Z, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal, 2014, 4: 1693–1705CrossRefGoogle Scholar
  11. 11.
    Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A, 2015, 3: 14942–14962CrossRefGoogle Scholar
  12. 12.
    Callejas JF, Read CG, Roske CW, et al. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogenevolution reaction. Chem Mater, 2016, 28: 6017–6044CrossRefGoogle Scholar
  13. 13.
    Lu S, Zhuang Z. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci China Mater, 2016, 59: 217–238CrossRefGoogle Scholar
  14. 14.
    Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev, 2016, 45: 1529–1541CrossRefGoogle Scholar
  15. 15.
    Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater, 2017, 29: 1605838CrossRefGoogle Scholar
  16. 16.
    Wang J, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater, 2016, 28: 215–230CrossRefGoogle Scholar
  17. 17.
    Popczun EJ, McKone JR, Read CG, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135: 9267–9270CrossRefGoogle Scholar
  18. 18.
    Jiang P, Liu Q, Liang Y, et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed, 2014, 53: 12855–12859CrossRefGoogle Scholar
  19. 19.
    Tian J, Liu Q, Asiri AM, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc, 2014, 136: 7587–7590CrossRefGoogle Scholar
  20. 20.
    Tian J, Liu Q, Cheng N, et al. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed, 2014, 53: 9577–9581CrossRefGoogle Scholar
  21. 21.
    Popczun EJ, Read CG, Roske CW, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed, 2014, 53: 5427–5430CrossRefGoogle Scholar
  22. 22.
    Yang J, Zhang F, Wang X, et al. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew Chem Int Ed, 2016, 55: 12854–12858CrossRefGoogle Scholar
  23. 23.
    Chen X, Wang D, Wang Z, et al. Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction. Chem Commun, 2014, 50: 11683–11685CrossRefGoogle Scholar
  24. 24.
    McEnaney JM, Crompton JC, Callejas JF, et al. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem Mater, 2014, 26: 4826–4831CrossRefGoogle Scholar
  25. 25.
    Xiao P, Sk MA, Thia L, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci, 2014, 7: 2624–2629CrossRefGoogle Scholar
  26. 26.
    Xing Z, Liu Q, Asiri AM, et al. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater, 2014, 26: 5702–5707CrossRefGoogle Scholar
  27. 27.
    McFarland EW, Metiu H. Catalysis by doped oxides. Chem Rev, 2013, 113: 4391–4427CrossRefGoogle Scholar
  28. 28.
    Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci, 2013, 6: 2839–2855CrossRefGoogle Scholar
  29. 29.
    Pham VP, Yeom GY. Recent advances in doping of molybdenum disulfide: industrial applications and future prospects. Adv Mater, 2016, 28: 9024–9059CrossRefGoogle Scholar
  30. 30.
    Tedstone AA, Lewis DJ, O’Brien P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mater, 2016, 28: 1965–1974CrossRefGoogle Scholar
  31. 31.
    Wu G, Santandreu A, Kellogg W, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29: 83–110CrossRefGoogle Scholar
  32. 32.
    Sun A, Shen Y, Wu Z, et al. N-doped MoP nanoparticles for improved hydrogen evolution. Int J Hydrogen Energy, 2017, 42: 14566–14571CrossRefGoogle Scholar
  33. 33.
    Kibsgaard J, Jaramillo TF. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed, 2014, 53: 14433–14437CrossRefGoogle Scholar
  34. 34.
    Anjum MAR, Lee JS. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media. ACS Catal, 2017, 7: 3030–3038CrossRefGoogle Scholar
  35. 35.
    Fields M, Tsai C, Chen LD, et al. Scaling relations for adsorption energies on doped molybdenum phosphide surfaces. ACS Catal, 2017, 7: 2528–2534CrossRefGoogle Scholar
  36. 36.
    Liang Y, Wang H, Diao P, et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc, 2012, 134: 15849–15857CrossRefGoogle Scholar
  37. 37.
    Zhuang Z, Giles SA, Zheng J, et al. Nickel supported on nitrogendoped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat Commun, 2016, 7: 10141CrossRefGoogle Scholar
  38. 38.
    Wang H, Dai H. Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem Soc Rev, 2013, 42: 3088–3113CrossRefGoogle Scholar
  39. 39.
    Pu Z, Amiinu IS, Liu X, et al. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale, 2016, 8: 17256–17261CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Wang S, Li C, et al. Nanostructured molybdenum phosphide/N, P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution. RSC Adv, 2016, 6: 7370–7377CrossRefGoogle Scholar
  41. 41.
    Song J, Xiang J, Mu C, et al. Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor. Sci China Mater, 2017, 60: 1179–1186CrossRefGoogle Scholar
  42. 42.
    Ellison MD, Crotty MJ, Koh D, et al. Adsorption of NH3 and NO2 on single-walled carbon nanotubes. J Phys Chem B, 2004, 108: 7938–7943CrossRefGoogle Scholar
  43. 43.
    Yi H, Yu Q, Tang X, et al. Phosphine adsorption removal from yellow phosphorus tail gas over CuO-ZnO-La2O3/activated carbon. Ind Eng Chem Res, 2011, 50: 3960–3965CrossRefGoogle Scholar
  44. 44.
    Phillips DC, Sawhill SJ, Self R, et al. Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J Catal, 2002, 207: 266–273CrossRefGoogle Scholar
  45. 45.
    Bai J, Li X, Wang A, et al. Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization. J Catal, 2013, 300: 197–200CrossRefGoogle Scholar
  46. 46.
    Sanjinés R, Wiemer C, Almeida J, et al. Valence band photoemission study of the Ti1-xMoxNy system. Thin Solid Films, 1996, 290–291: 334–338CrossRefGoogle Scholar
  47. 47.
    Zhang J, Jiang J, Zhao XS. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C, 2011, 115: 6448–6454CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juntao Zhang (张俊涛)
    • 1
  • Rui Sui (眭瑞)
    • 1
  • Yanrong Xue (薛延荣)
    • 1
  • Xingdong Wang (王兴栋)
    • 1
  • Jiajing Pei (裴加景)
    • 1
  • Xin Liang (梁鑫)
    • 2
    • 3
    Email author
  • Zhongbin Zhuang (庄仲滨)
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  3. 3.Beijing Key Laboratory of Energy Environmental CatalysisBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations