Skip to main content
Log in

Tunable multi-stage wettability and adhesion force on polymer brushes triggered by temperature and pH

温度和pH触发的可调多级浸润和粘附力聚合物刷

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

智能响应性可以将丰富的功能集成到微流体器件中; 同时在刺激前后稳定的润湿区域赋予微流体器件稳定的功能表达. 因此在微流体器件领域, 如何构建具有多重响应的多梯度润湿表面仍然是目前面临的一个巨大挑战. 本文应用原子转移自由基聚合方法在硅基底上制备聚(N-异丙基甲基丙烯酰胺)-b-(N-异丙基丙烯酰胺)-co-2-(甲基丙烯酰氧基)乙基磷酸)聚合物刷. 通过对温度和pH值的控制, 在聚 合物表面实现了浸润性的多级梯度变化. 同时, 伴随着温度和pH值的变化, 聚合物刷表面的粘附力也表现为多级梯度变化. 这种多重响应的多级梯度变化的聚合物刷将为多功能微流体和生物分析器件的构建提供一种新方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater, 2010, 9: 101–113

    Article  Google Scholar 

  2. Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev, 2015, 115: 8230–8293

    Article  Google Scholar 

  3. Zhang D, Cheng Z, Kang H, et al. A smart superwetting surface with responsivity in both surface chemistry and microstructure. Angew Chem Int Ed, 2018, 57: 3701–3705

    Article  Google Scholar 

  4. Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nat Rev Mater, 2017, 2: 17036

    Article  Google Scholar 

  5. Lei S, Wang F, Li W, et al. Reversible wettability between superhydrophobicity and superhydrophilicity of Ag surface. Sci China Mater, 2016, 59: 348–354

    Article  Google Scholar 

  6. Cui Y, Li D, Bai H. Bioinspired smart materials for directional liquid transport. Ind Eng Chem Res, 2017, 56: 4887–4897

    Article  Google Scholar 

  7. Han H, Lee JS, Kim H, et al. Single-droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuumbased droplet manipulation. ACS Nano, 2018, 12: 932–941

    Article  Google Scholar 

  8. Ju J, Zheng Y, Jiang L. Bioinspired one-dimensional materials for directional liquid transport. Acc Chem Res, 2014, 47: 2342–2352

    Article  Google Scholar 

  9. Liu HL, Wang ST. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces with controllable cell adhesion. Sci China Chem, 2014, 57: 552–557

    Article  Google Scholar 

  10. Banuprasad TN, Vinay TV, Subash CK, et al. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient. ACS Appl Mater Interfaces, 2017, 9: 28046–28054

    Article  Google Scholar 

  11. Sun T, Wang G, Feng L, et al. Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem, 2004, 116: 361–364

    Article  Google Scholar 

  12. Xu C, Wayland BB, Fryd M, et al. pH-responsive nanostructures assembled from amphiphilic block copolymers. Macromolecules, 2006, 39: 6063–6070

    Article  Google Scholar 

  13. Fu Y, Jin B, Zhang Q, et al. pH-induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation. ACS Appl Mater Interfaces, 2017, 9: 30161–30170

    Article  Google Scholar 

  14. Wang B, Guo Z, Liu W. pH-responsive smart fabrics with controllable wettability in different surroundings. RSC Adv, 2014, 4: 14684–14690

    Article  Google Scholar 

  15. Singh S, Friedel K, Himmerlich M, et al. Spatiotemporal photopatterning on polycarbonate surface through visible light responsive polymer bound DASA compounds. ACS Macro Lett, 2015, 4: 1273–1277

    Article  Google Scholar 

  16. Lim HS, Han JT, Kwak D, et al. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J Am Chem Soc, 2006, 128: 14458–14459

    Article  Google Scholar 

  17. Xie G, Li P, Zhao Z, et al. Light-and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport. J Am Chem Soc, 2018, 140: 4552–4559

    Article  Google Scholar 

  18. Lahann J, Mitragotri S, Tran TN, et al. A reversibly switching surface. Science, 2003, 299: 371–374

    Article  Google Scholar 

  19. Cantini E, Wang X, Koelsch P, et al. Electrically responsive surfaces: experimental and theoretical investigations. Acc Chem Res, 2016, 49: 1223–1231

    Article  Google Scholar 

  20. Zheng X, Guo Z, Tian D, et al. Electric field induced switchable wettability to water on the polyaniline membrane and oil/water separation. Adv Mater Interfaces, 2016, 3: 1600461

    Article  Google Scholar 

  21. Yang C, Wu L, Li G. Magnetically responsive superhydrophobic surface: in situ reversible switching of water droplet wettability and adhesion for droplet manipulation. ACS Appl Mater Interfaces, 2018, 10: 20150–20158

    Article  Google Scholar 

  22. Lee S, Yim C, Kim W, et al. Magnetorheological elastomer films with tunable wetting and adhesion properties. ACS Appl Mater Interfaces, 2015, 7: 19853–19856

    Article  Google Scholar 

  23. Drotlef DM, Blümler P, del Campo A. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv Mater, 2014, 26: 775–779

    Article  Google Scholar 

  24. Song W, Xia F, Bai Y, et al. Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film. Langmuir, 2007, 23: 327–331

    Article  Google Scholar 

  25. Zhang X, Shi F, Yu X, et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward superhydrophobic surface. J Am Chem Soc, 2004, 126: 3064–3065

    Article  Google Scholar 

  26. Li S, Li H, Wang X, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J Phys Chem B, 2002, 106: 9274–9276

    Article  Google Scholar 

  27. Miller JD, Veeramasuneni S, Drelich J, et al. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films. Polym Eng Sci, 1996, 36: 1849–1855

    Article  Google Scholar 

  28. Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science, 2000, 290: 2130–2133

    Article  Google Scholar 

  29. Feng L, Song Y, Zhai J, et al. Creation of a superhydrophobic surface from an amphiphilic polymer. Angew Chem Int Ed, 2003, 42: 800–802

    Article  Google Scholar 

  30. Xia F, Ge H, Hou Y, et al. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater, 2007, 19: 2520–2524

    Article  Google Scholar 

  31. Wang G, Han G, Wen Y, et al. Photo-and pH-responsive electrospun polymer films: wettability and protein adsorption characteristics. Chem Lett, 2015, 44: 1368–1370

    Article  Google Scholar 

  32. Wang B, Liu HJ, Jiang TT, et al. Thermo-, and pH dual-responsive poly(N-vinylimidazole): Preparation, characterization and its switchable catalytic activity. Polymer, 2014, 55: 6036–6043

    Article  Google Scholar 

  33. Xia F, Feng L, Wang S, et al. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater, 2006, 18: 432–436

    Article  Google Scholar 

  34. Hou X. Smart gating multi-scale pore/channel-based membranes. Adv Mater, 2016, 28: 7049–7064

    Article  Google Scholar 

  35. Yuan W, Jiang G, Wang J, et al. Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer. Macromolecules, 2006, 39: 1300–1303

    Article  Google Scholar 

  36. Darmanin T, Guittard F. pH-and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOT derivatives containing carboxylic acids and long alkyl chains. ChemPhysChem, 2013, 14: 2529–2533

    Article  Google Scholar 

  37. Zhou F, Huck WTS. Three-stage switching of surface wetting using phosphate-bearing polymer brushes. Chem Commun, 2005, 165: 5999

    Article  Google Scholar 

  38. Gilles FM, Tagliazucchi M, Azzaroni O, et al. Ionic conductance of polyelectrolyte-modified nanochannels: nanoconfinement effects on the coupled protonation equilibria of polyprotic brushes. J Phys Chem C, 2016, 120: 4789–4798

    Article  Google Scholar 

  39. Song W, Li H, Wang C, et al. Design of multi-stage thermal responsive wettable surface. Adv Mater Interfaces, 2014, 1: 1400009

    Article  Google Scholar 

  40. Liu H, Li Y, Sun K, et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J Am Chem Soc, 2013, 135: 7603–7609

    Article  Google Scholar 

  41. Jalili K, Abbasi F, Milchev A. Surface microdynamics phase transition and internal structure of high-density, ultrathin PHEMA-b-PNIPAM diblock copolymer brushes on silicone rubber. Macromolecules, 2013, 46: 5260–5278

    Article  Google Scholar 

  42. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev, 2001, 101: 2921–2990

    Article  Google Scholar 

  43. Song W, Sun T, Song Y, et al. An atomic force microscopic investigation of electro-sensitive polymer surface. Talanta, 2005, 67: 543–547

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21774044, 21425314, 21434009 and 21421061), Ministry of Science and Technology (2013YQ190467), and the Top-Notch Young Talents Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Song  (宋文龙).

Additional information

Shuang zhang received her BSc degree in polymer material and engineering from Changchun University of Technology 2017. Her research interest is the interaction between bio-inspired surface/interface.

Wenlong Song received his BSc degree in applied chemistry in 2002 from Jilin University, China, and awarded his PhD degree in 2007 with Prof. Fengqi Liu and Prof. Lei Jiang under a joint course of the College of Chemistry, Jilin University and the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). Then he worked as a postdoctoral fellow in 3B’s group-Biomaterials, Biodegradables and Biomimetics in Minho University of Portugal. In 2011, he joined the State Key Laboratory of Supramolecular Structure and Materials, Jilin University. His research interests are focused on: (i) investigating the interaction between bioinspired surface/interface and cells; (ii) constructing biomimetic hydrogels for artificial cartilage.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, J., Zhang, X. et al. Tunable multi-stage wettability and adhesion force on polymer brushes triggered by temperature and pH. Sci. China Mater. 62, 597–603 (2019). https://doi.org/10.1007/s40843-018-9357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9357-9

Navigation