Application of facile solution-processed ternary sulfide Ag8SnS6 as light absorber in thin film solar cells

  • Liangzheng Zhu (朱梁正)
  • Yafeng Xu (徐亚峰)
  • Haiying Zheng (郑海英)
  • Guozhen Liu (刘国震)
  • Xiaoxiao Xu (徐笑笑)
  • Xu Pan (潘旭)
  • Songyuan Dai (戴松元)
Articles
  • 11 Downloads

Abstract

Light absorber is critical to the further applications of thin film solar cells. Here, we report a facile solution-processed method with an annealing temperature below 250°C to fabricate Ag8SnS6 (ATS) light absorber for thin film solar cells. After optimization, the ATS-based thin film solar cells exhibited a reproducible power conversion efficiency (PCE) of about 0.25% and an outstanding long-term stability with 90% of the initial PCE retained after a more than 1,000 h degradation test. This research revealed the potential application of ATS as an earth-abundant, low toxic and chemically stable light absorber in thin film solar cells.

Keywords

thin film solar cells ternary sulfide light absorber 

温和溶液法制备三元硫化物Ag8SnS6作为吸光材料在薄膜太阳电池中的应用

摘要

吸光材料是薄膜太阳电池进一步应用的重要因素. 三元硫化物Ag8SnS6 (ATS)拥有诸多优秀的光电性质. 然而, 关于ATS在吸光材料方面的应用鲜有报道. 因此, 本文通过使用一种退火温度低于250°C的温和溶液法制备ATS吸光材料并将其应用于薄膜太阳电池之中. 在优化之后, 基于ATS的薄膜太阳电池展现出了具有潜力的光伏性能以及可再现的0.25%光电转化效率. 更重要的是, 基于ATS的器件展现出了卓越的长期稳定性, 在超过1000小时的老化测试后器件仍然还有90%的初始效率. 本研究不仅揭示了含量丰富、 低毒且化学性质稳定的ATS作为吸光材料的潜力, 也为薄膜太阳电池中新型吸光材料的研究提供了全新的视角.

Notes

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (2015AA050602), the Project of Science and Technology Service (STS) Network Initiative, Chinese Academy of Sciences (KFJ-SW-STS-152).

Supplementary material

40843_2018_9272_MOESM1_ESM.pdf (389 kb)
Application of facile solution-processed ternary sulfide Ag8SnS6 as light absorber in thin film solar cells

References

  1. 1.
    Service RF. Perovskite solar cells gear up to go commercial. Science, 2016, 354: 1214–1215CrossRefGoogle Scholar
  2. 2.
    Kramer IJ, Sargent EH. The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev, 2014, 114: 863–882CrossRefGoogle Scholar
  3. 3.
    Bernechea M, Miller NC, Xercavins G, et al. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat Photonics, 2016, 10: 521–525CrossRefGoogle Scholar
  4. 4.
    Sinsermsuksakul P, Sun L, Lee SW, et al. Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater, 2014, 4: 1400496CrossRefGoogle Scholar
  5. 5.
    Espindola-Rodriguez M, Sylla D, Sánchez Y, et al. Bifacial kesterite solar cells on FTO substrates. ACS Sustain Chem Eng, 2017, 5: 11516–11524CrossRefGoogle Scholar
  6. 6.
    Steinmann V, Jaramillo R, Hartman K, et al. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv Mater, 2014, 26: 7488–7492CrossRefGoogle Scholar
  7. 7.
    Guo Y, Lei H, Li B, et al. Improved performance in Ag2S/P3HT hybrid solar cells with a solution processed SnO2 electron transport layer. RSC Adv, 2016, 6: 77701–77708CrossRefGoogle Scholar
  8. 8.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  9. 9.
    Chuang CHM, Brown PR, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater, 2014, 13: 796–801CrossRefGoogle Scholar
  10. 10.
    Pan Z, Zhao K, Wang J, et al. Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano, 2013, 7: 5215–5222CrossRefGoogle Scholar
  11. 11.
    Panthani MG, Kurley JM, Crisp RW, et al. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett, 2014, 14: 670–675CrossRefGoogle Scholar
  12. 12.
    Romanyuk YE, Hagendorfer H, Stücheli P, et al. All solutionprocessed chalcogenide solar cells—from single functional layers towards a 13.8% efficient CIGS device. Adv Funct Mater, 2015, 25: 12–27CrossRefGoogle Scholar
  13. 13.
    Major JD, Treharne RE, Phillips LJ, et al. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature, 2014, 511: 334–337CrossRefGoogle Scholar
  14. 14.
    Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647CrossRefGoogle Scholar
  15. 15.
    Chen H, Pan X, Liu W, et al. Efficient panchromatic inorganic–organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem Commun, 2013, 49: 7277–7279CrossRefGoogle Scholar
  16. 16.
    Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353: 58–62CrossRefGoogle Scholar
  17. 17.
    Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  18. 18.
    Huang F, Dkhissi Y, Huang W, et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10: 10–18CrossRefGoogle Scholar
  19. 19.
    Ding X, Ren Y, Wu Y, et al. Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Sci China Mater, 2017, 61: 73–79CrossRefGoogle Scholar
  20. 20.
    Hou Y, Du X, Scheiner S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358: 1192–1197CrossRefGoogle Scholar
  21. 21.
    Zuo C, Bolink HJ, Han H, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3: 1500324CrossRefGoogle Scholar
  22. 22.
    Grätzel M. The light and shade of perovskite solar cells. Nat Mater, 2014, 13: 838–842CrossRefGoogle Scholar
  23. 23.
    Chen H, Hou Y, Halbig CE, et al. Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. J Mater Chem A, 2016, 4: 11604–11610CrossRefGoogle Scholar
  24. 24.
    Zuo C, Ding L. Lead-free perovskite materials (NH4)3Sb2IxBr9-x. Angew Chem Int Ed, 2017, 56: 6528–6532CrossRefGoogle Scholar
  25. 25.
    Bai H, Shen T, Wang S, et al. Controlled growth of Cu3Se2 nanosheets array counter electrode for quantum dots sensitized solar cell through ion exchange. Sci China Mater, 2017, 60: 637–645CrossRefGoogle Scholar
  26. 26.
    Zhao J, Liu Z, Tang H, et al. Enhanced performance of solar cells via anchoring CuGaS2 quantum dots. Sci China Mater, 2017, 60: 829–838CrossRefGoogle Scholar
  27. 27.
    Volonakis G, Haghighirad AA, Milot RL, et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J Phys Chem Lett, 2017, 8: 772–778CrossRefGoogle Scholar
  28. 28.
    Polman A, Knight M, Garnett EC, et al. Photovoltaic materials: Present efficiencies and future challenges. Science, 2016, 352: aad4424CrossRefGoogle Scholar
  29. 29.
    Park NG. Perovskite solar cells: an emerging photovoltaic technology. Mater Today, 2015, 18: 65–72CrossRefGoogle Scholar
  30. 30.
    Kameyama T, Fujita S, Furusawa H, et al. Size-controlled synthesis of Ag8SnS6 nanocrystals for efficient photoenergy conversion systems driven by visible and near-IR lights. Part Part Syst Charact, 2014, 31: 1122–1126CrossRefGoogle Scholar
  31. 31.
    Yeh LY, Cheng KW. Preparation of chemical bath synthesized ternary Ag–Sn–S thin films as the photoelectrodes in photoelectrochemical cell. J Power Sources, 2015, 275: 750–759CrossRefGoogle Scholar
  32. 32.
    Shambharkar BH, Chowdhury AP. Ethylene glycol mediated synthesis of Ag8SnS6 nanoparticles and their exploitation in the degradation of eosin yellow and brilliant green. RSC Adv, 2016, 6: 10513–10519CrossRefGoogle Scholar
  33. 33.
    Cheng KW, Tsai WT, Wu YH. Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells. J Power Sources, 2016, 317: 81–92CrossRefGoogle Scholar
  34. 34.
    Hu WQ, Shi YF, Wu LM. Synthesis and shape control of Ag8SnS6 submicropyramids with high surface energy. Cryst Growth Des, 2012, 12: 3458–3464CrossRefGoogle Scholar
  35. 35.
    Zhao W, Wang G, Tian Q, et al. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol–gel route using SnS2 as Sn source. ACS Appl Mater Interfaces, 2014, 6: 12650–12655CrossRefGoogle Scholar
  36. 36.
    Webber DH, Brutchey RL. Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J Am Chem Soc, 2013, 135: 15722–15725CrossRefGoogle Scholar
  37. 37.
    Abdullah Almessiere M, Al-Otaibi AL, Assaker IB, et al. Electrodeposited and characterization of Ag–Sn–S semiconductor thin films. Mater Sci Semicond Proc, 2015, 40: 267–275CrossRefGoogle Scholar
  38. 38.
    Hagfeldt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68CrossRefGoogle Scholar
  39. 39.
    Khot KV, Ghanwat VB, Bagade CS, et al. Synthesis of SnS2 thin film via non vacuum arrested precipitation technique for solar cell application. Mater Lett, 2016, 180: 23–26CrossRefGoogle Scholar
  40. 40.
    Domanski K, Correa-Baena JP, Mine N, et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10: 6306–6314CrossRefGoogle Scholar
  41. 41.
    Choi H, Jeong J, Kim HB, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7: 80–85CrossRefGoogle Scholar
  42. 42.
    Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354: 92–95CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liangzheng Zhu (朱梁正)
    • 1
    • 2
  • Yafeng Xu (徐亚峰)
    • 1
    • 2
  • Haiying Zheng (郑海英)
    • 1
    • 2
  • Guozhen Liu (刘国震)
    • 1
    • 2
  • Xiaoxiao Xu (徐笑笑)
    • 1
    • 2
  • Xu Pan (潘旭)
    • 1
  • Songyuan Dai (戴松元)
    • 3
  1. 1.Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijingChina

Personalised recommendations