Synthesis of water-soluble dye-cored poly (amidoamine) dendrimers for long-term live cell imaging

  • Yang Cai (蔡阳)
  • Chendong Ji (冀辰东)
  • Shaobo Zhang (张少博)
  • Zhiqiang Su (苏志强)
  • Meizhen Yin (尹梅贞)
Articles SPECIAL ISSUE: Diagnostic and Theranostic Platforms Based on Dendrimers and Hyperbranched Polymers


Hydrophilic dendrimers, especially poly(amidoamine) (PAMAM) dendrimers are widely applied in modifying fluorescent dyes to endow them with water solubility and biocompatibility for biologic fluorescence imaging. Common preparation strategies of fluorescent dendrimers including encapsulating dyes or attaching dyes at periphery of dendrimers might cause uncertain constituent and lower biocompatibility. Here, we have developed a series of watersoluble fluorescent dendrimers with dye as core and fanshaped PAMAM as arms. Carboxylated perylene bisimides (PBI) dye and squarylium indocyanine (SICy) dye were conjugated with PAMAM dendrons by amidation to obtain a series of fluorescent dendrimers with enhanced water-solubility. Two PBI based dendrimers (PBI-G2.5 and PBI-G1.5) were chosen as model compounds for further optical, selfassembly and biological studies. In aqueous environment, PBI-G2.5 exhibited strong fluorescence, small size (~30 nm) and slightly positive surface charge (~2.46 mV), which are ideal for biomedical applications. In vitro assays demonstrated that PBI-G2.5 nanoparticles accumulated in the cytoplasm of HeLa cells with rapid cellular uptake. The strong fluorescence in HeLa cells remained for over 48 h. To conclude, our study provides an effective strategy for preparing water-soluble fluorescent dendrimers towards long-term live cell imaging.


fluorescent dendrimers fan-shaped PAMAM perylene bisimides water solubility live cell imaging 



亲水聚酰胺-胺型(PAMAM)树枝状分子能够提高荧光染料水溶性和生物相容性, 被广泛应用于生物荧光成像、药物、基因递送等 领域. 本文报道了一系列以扇形PAMAM为树枝, 以荧光染料为核的水溶性荧光树枝状分子. 扇形PAMAM树枝可通过酰胺化反应与羧基 化的苝酰亚胺(PBI)和吲哚方酸菁(SICy)染料相连. 随后, 我们进一步研究了PBI系列树枝状分子的物理性质及生物性能. PBI-G2.5具有良 好的水溶性, 强荧光发射, 并能在水中自组装形成30 nm的纳米粒子. 细胞实验表明, PBI-G2.5被细胞摄取后在细胞质富集, 且48小时后仍 可检测到强的荧光. 因此, 本合成方法可以有效制备水溶性、生物相容性良好的荧光树枝状分子, 并在长效活细胞荧光成像中有应用前景.



This work was financially supported by the National Natural Science Foundation of China (21774007, 21574009 and 51521062), and the Higher Education and High-quality and World-class Universities (PY201605).

Supplementary material

40843_2018_9246_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1620 KB.


  1. 1.
    Chen M, Yin M. Design and development of fluorescent nanostructures for bioimaging. Prog Polymer Sci, 2014, 39: 365–395CrossRefGoogle Scholar
  2. 2.
    Liu K, Xu Z, Yin M, et al. A multifunctional perylenediimide derivative (DTPDI) can be used as a recyclable specific Hg2+ ion sensor and an efficient DNA delivery carrier. J Mater Chem B, 2014, 2: 2093–2096CrossRefGoogle Scholar
  3. 3.
    Liu K, Hu Y, Xu Z, et al. Fluorescent sensor for rapid detection of nucleophile and convenient comparison of nucleophilicity. Anal Chem, 2017, 89: 5131–5137CrossRefGoogle Scholar
  4. 4.
    Yao Q, Lü B, Ji C, et al. Supramolecular host–guest system as ratiometric Fe3+ ion sensor based on water-soluble pillar[5]arene. ACS Appl Mater Interfaces, 2017, 9: 36320–36326CrossRefGoogle Scholar
  5. 5.
    Sun M, Müllen K, Yin M. Water-soluble perylenediimides: design concepts and biological applications. Chem Soc Rev, 2016, 45: 1513–1528CrossRefGoogle Scholar
  6. 6.
    Liu K, Xu Z, Yin M. Perylenediimide-cored dendrimers and their bioimaging and gene delivery applications. Prog Polymer Sci, 2015, 46: 25–54CrossRefGoogle Scholar
  7. 7.
    Dong R, Zhou Y, Zhu X. Supramolecular dendritic polymers: from synthesis to applications. Acc Chem Res, 2014, 47: 2006–2016CrossRefGoogle Scholar
  8. 8.
    Albertazzi L, Storti B, Marchetti L, et al. Delivery and subcellular targeting of dendrimer-based fluorescent pH sensors in living cells. J Am Chem Soc, 2010, 132: 18158–18167CrossRefGoogle Scholar
  9. 9.
    Han HJ, Kannan RM, Wang S, et al. Multifunctional dendrimertemplated antibody presentation on biosensor surfaces for improved biomarker detection. Adv Funct Mater, 2010, 20: 409–421CrossRefGoogle Scholar
  10. 10.
    Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA, 2016, 113: 4164–4169CrossRefGoogle Scholar
  11. 11.
    Chen S, Fan JX, Qiu WX, et al. Self-assembly drug delivery system based on programmable dendritic peptide applied in multidrug resistance tumor therapy. Macromol Rapid Commun, 2017, 38: 1700490CrossRefGoogle Scholar
  12. 12.
    Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci USA, 2015, 112: 2978–2983CrossRefGoogle Scholar
  13. 13.
    Sun M, Yin W, Dong X, et al. Fluorescent supramolecular micelles for imaging-guided cancer therapy. Nanoscale, 2016, 8: 5302–5312CrossRefGoogle Scholar
  14. 14.
    Cheng W, Cheng H, Wan S, et al. Dual-stimulus-responsive fluorescent supramolecular prodrug for antitumor drug delivery. Chem Mater, 2017, 29: 4218–4226CrossRefGoogle Scholar
  15. 15.
    Zhang S, Guo W, Wei J, et al. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. ACS Nano, 2017, 11: 3797–3805CrossRefGoogle Scholar
  16. 16.
    Shao S, Zhou Q, Si J, et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng, 2017, 1: 745–757CrossRefGoogle Scholar
  17. 17.
    Xu Z, He B, Shen J, et al. Fluorescent water-soluble perylenediimide- cored cationic dendrimers: synthesis, optical properties, and cell uptake. Chem Commun, 2013, 49: 3646CrossRefGoogle Scholar
  18. 18.
    Xu Z, He B, Wei W, et al. Highly water-soluble perylenediimidecored poly(amido amine) vector for efficient gene transfection. J Mater Chem B, 2014, 2: 3079–3086CrossRefGoogle Scholar
  19. 19.
    Shen D, Zhou F, Xu Z, et al. Systemically interfering with immune response by a fluorescent cationic dendrimer delivered gene suppression. J Mater Chem B, 2014, 2: 4653–4659CrossRefGoogle Scholar
  20. 20.
    Jiang L, Ding L, He B, et al. Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale, 2014, 6: 9965–9969CrossRefGoogle Scholar
  21. 21.
    Wei P, Chen J, Hu Y, et al. Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors. Adv Healthcare Mater, 2016, 5: 3203–3213CrossRefGoogle Scholar
  22. 22.
    Zhang S, Li J, Wei J, et al. Perylenediimide chromophore as an efficient photothermal agent for cancer therapy. Sci Bull, 2018, 63: 101–107CrossRefGoogle Scholar
  23. 23.
    Qiao Z, Shi X. Dendrimer-based molecular imaging contrast agents. Prog Polymer Sci, 2015, 44: 1–27CrossRefGoogle Scholar
  24. 24.
    Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev, 2010, 110: 1857–1959CrossRefGoogle Scholar
  25. 25.
    Lamy CM, Sallin O, Loussert C, et al. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano, 2012, 6: 1176–1187CrossRefGoogle Scholar
  26. 26.
    Srikun D, Albers AE, Chang CJ. A dendrimer-based platform for simultaneous dual fluorescence imaging of hydrogen peroxide and pH gradients produced in living cells. Chem Sci, 2011, 2: 1156CrossRefGoogle Scholar
  27. 27.
    Dougherty CA, Vaidyanathan S, Orr BG, et al. Fluorophore: dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime. Bioconjugate Chem, 2015, 26: 304–315CrossRefGoogle Scholar
  28. 28.
    Ravizzini G, Turkbey B, Barrett T, et al. Nanoparticles in sentinel lymph node mapping. WIREs-Nanmed Nanobiotechnol, 2009, 1: 610–623CrossRefGoogle Scholar
  29. 29.
    Caminade AM, Hameau AÃ, Majoral JP. Multicharged and/or water-soluble fluorescent dendrimers: properties and uses. Chem Eur J, 2009, 15: 9270–9285CrossRefGoogle Scholar
  30. 30.
    Georgiev NI, Sakr AR, Bojinov VB. Design and synthesis of novel fluorescence sensing perylene diimides based on photoinduced electron transfer. Dyes Pigments, 2011, 91: 332–339CrossRefGoogle Scholar
  31. 31.
    Wang B, Luo Y, Jia X, et al. Synthesis and characterization of fanshape PAMAM dendrons. Acta Polymerica Sinica, 2004: 304–308Google Scholar
  32. 32.
    Dean KM, Palmer AE. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol, 2014, 10: 512–523CrossRefGoogle Scholar
  33. 33.
    Yin M, Shen J, Pflugfelder GO, et al. A fluorescent core−shell dendritic macromolecule specifically stains the extracellular matrix. J Am Chem Soc, 2008, 130: 7806–7807CrossRefGoogle Scholar
  34. 34.
    Yin M, Kuhlmann CRW, Sorokina K, et al. Novel fluorescent core–shell nanocontainers for cell membrane transport. Biomacromolecules, 2008, 9: 1381–1389CrossRefGoogle Scholar
  35. 35.
    Wang W, Li Y, Cheng L, et al. Water-soluble and phosphoruscontaining carbon dots with strong green fluorescence for cell labeling. J Mater Chem B, 2014, 2: 46–48CrossRefGoogle Scholar
  36. 36.
    Li J, Guo K, Shen J, et al. A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes. Small, 2014, 10: 1351–1360CrossRefGoogle Scholar
  37. 37.
    Xu Z, Guo K, Yu J, et al. A unique perylene-based DNA intercalator: localization in cell nuclei and inhibition of cancer cells and tumors. Small, 2014, 116: 4087–4092Google Scholar
  38. 38.
    Ji C, Zheng Y, Li J, et al. An amphiphilic squarylium indocyanine dye for long-term tracking of lysosomes. J Mater Chem B, 2015, 3: 7494–7498CrossRefGoogle Scholar
  39. 39.
    Xu Z, Cheng W, Guo K, et al. Molecular size, shape, and electric charges: essential for perylene bisimide-based DNA Intercalator to localize in cell nuclei and inhibit cancer cell growth. ACS Appl Mater Interfaces, 2015, 7: 9784–9791CrossRefGoogle Scholar
  40. 40.
    Ye Y, Zheng Y, Ji C, et al. Self-assembly and disassembly of amphiphilic zwitterionic perylenediimide vesicles for cell membrane imaging. ACS Appl Mater Interfaces, 2017, 9: 4534–4539CrossRefGoogle Scholar
  41. 41.
    Esfand R, Tomalia DA. Laboratory synthesis of poly (amidoamine) (PAMAM) dendrimers. Dendrimers and other dendritic polymers, 2001: 587–604Google Scholar
  42. 42.
    Haag R, Sunder A, Stumbé JF. An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J Am Chem Soc, 2000, 122: 2954–2955CrossRefGoogle Scholar
  43. 43.
    Kaiser H, Lindner J, Langhals H. Synthese von nichtsymmetrisch substituierten Perylen-Fluoreszenzfarbstoffen. Chem Ber, 1991, 124: 529–535CrossRefGoogle Scholar
  44. 44.
    Schmidt CD, Böttcher C, Hirsch A. Synthesis and aggregation properties of water-soluble newkome-dendronized perylenetetracarboxdiimides. Eur J Org Chem, 2007, 2007: 5497–5505CrossRefGoogle Scholar
  45. 45.
    Zhang X, Chen Z, Würthner F. Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge-and dumbbellshaped amphiphilic perylene bisimides. J Am Chem Soc, 2007, 129: 4886–4887CrossRefGoogle Scholar
  46. 46.
    Yang SK, Shi X, Park S, et al. Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling. J Am Chem Soc, 2011, 133: 9964–9967CrossRefGoogle Scholar
  47. 47.
    Zhang X, Rehm S, Safont-Sempere MM, et al. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat Chem, 2009, 1: 623–629CrossRefGoogle Scholar
  48. 48.
    Choi JS, Nam K, Park JY, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J Control Release, 2004, 99: 445–456CrossRefGoogle Scholar
  49. 49.
    Liu X, Xiang J, Zhu D, et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv Mater, 2016, 28: 1743–1752CrossRefGoogle Scholar
  50. 50.
    Hu X, Hu J, Tian J, et al. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc, 2013, 135: 17617–17629CrossRefGoogle Scholar
  51. 51.
    Würthner F, Saha-Möller CR, Fimmel B, et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev, 2016, 116: 962–1052CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Cai (蔡阳)
    • 1
  • Chendong Ji (冀辰东)
    • 1
  • Shaobo Zhang (张少博)
    • 1
  • Zhiqiang Su (苏志强)
    • 1
  • Meizhen Yin (尹梅贞)
    • 1
  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations