Dendrimer-based NPs in cancer chemotherapy and genetherapy

  • Lei Jiang (姜雷)
  • Sensen Zhou (周森森)
  • Xiaoke Zhang (张小可)
  • Wei Wu (武伟)
  • Xiqun Jiang (蒋锡群)
Review SPECIAL ISSUE: Diagnostic and Theranostic Platforms Based on Dendrimers and Hyperbranched Polymers


This review discusses recent studies on dendrimer- based nanoparticles in cancer chemotherapy and genetherapy. In order to achieve the high efficacy and low side effects of chemotherapy and genetherapy, it is essential to combine the unique features of dendrimers and the specific tumor microenvironment to target delivery and control release of therapeutic agents to tumor tissues and cells. Strategies to design the dendrimer-based delivery system in this review include non-modified dendrimers, dendrimer conjugates, assembled amphiphilic dendrimers, nanohybrid dendrimer carriers and dendrimers with inherent activity. In addition, specific functional groups on these dendrimers as stimuli-responsive system for targeting delivery and controlled release of therapeutic agents are discussed.


Dendrimer-based NPs cancer chemotherapy genetherapy 



针对肿瘤组织的微环境, 结合树状大分子的特点可以构建定向可控药物、基因传递系统, 实现化学或基因治疗中的高效低毒. 本综 述从树状大分子的结构出发, 总结了其纳米载体在肿瘤治疗中的最新进展, 尤其重点讨论了传统树状大分子、树状大分子偶联物、可自 组装的两亲性树状大分子、杂化树状大分子及自身具有药理活性的树状大分子作为药物或基因递送载体的应用. 我们希望本综述将有助 于启发未来的相关研究, 以进一步拓展这种材料在肿瘤治疗中的新应用.



This work was supported by the National Natural Science Foundation of China (81601594, 51690153, 21474045 and 21720102005).


  1. 1.
    Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater, 2016, 1: 16014CrossRefGoogle Scholar
  2. 2.
    Yang K, Feng L, Liu Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv Drug Deliver Rev, 2016, 105: 228–241CrossRefGoogle Scholar
  3. 3.
    El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release, 2004, 94: 1–14CrossRefGoogle Scholar
  4. 4.
    Husain SR, Han J, Au P, et al. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther, 2015, 22: 554–563CrossRefGoogle Scholar
  5. 5.
    Jiang L, Li L, He X, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials, 2015, 52: 126–139CrossRefGoogle Scholar
  6. 6.
    Yao X, Zhu Q, Li C, et al. Carbamoylmannose enhances the tumor targeting ability of supramolecular NPs formed through host–guest complexation of a pair of homopolymers. J Mater Chem B, 2017, 5: 834–848CrossRefGoogle Scholar
  7. 7.
    Arias JL. Drug targeting strategies in cancer treatment: An overview. Mini Rev Med Chem, 2011, 11: 1–17CrossRefGoogle Scholar
  8. 8.
    Mohanty C, Das M, R. Kanwar J, et al. Receptor mediated tumor targeting: an emerging approach for cancer therapy. Curr Drug Deliv, 2011, 8: 45–58CrossRefGoogle Scholar
  9. 9.
    Xu P, Van Kirk EA, Zhan Y, et al. Targeted charge-reversal NPs for nuclear drug delivery. Angew Chem Int Ed, 2007, 46: 4999–5002CrossRefGoogle Scholar
  10. 10.
    Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science, 2012, 337: 303–305CrossRefGoogle Scholar
  11. 11.
    Chandra S, Barick KC, Bahadur D. Oxide and hybrid nanostructures for therapeutic applications. Adv Drug Deliver Rev, 2011, 63: 1267–1281CrossRefGoogle Scholar
  12. 12.
    Lee SJ, Min HS, Ku SH, et al. Tumor-targeting glycol chitosan NPs as a platform delivery carrier in cancer diagnosis and therapy. Nanomedicine, 2014, 9: 1697–1713CrossRefGoogle Scholar
  13. 13.
    Brigger I, Dubernet C, Couvreur P. NPs in cancer therapy and diagnosis. Adv Drug Deliver Rev, 2002, 54: 631–651CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Chen W, Yang C, et al. Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J Control Release, 2016, 237: 115–124CrossRefGoogle Scholar
  15. 15.
    Gérard HC, Mishra MK, Mao G, et al. Dendrimer-enabled DNA delivery and transformation of Chlamydia pneumoniae. Nanomed- Nanotechnol Biol Med, 2013, 9: 996–1008CrossRefGoogle Scholar
  16. 16.
    Conti DS, Brewer D, Grashik J, et al. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm, 2014, 11: 1808–1822CrossRefGoogle Scholar
  17. 17.
    Chisholm EJ, Vassaux G, Martin-Duque P, et al. Cancer-specific transgene expression mediated by systemic injection of NPs. Cancer Res, 2009, 69: 2655–2662CrossRefGoogle Scholar
  18. 18.
    Merkel OM, Mintzer MA, Librizzi D, et al. Triazine dendrimers as nonviral vectors for in vitro and in vivo RNAi: The effects of peripheral groups and core structure on biological activity. Mol Pharm, 2010, 7: 969–983CrossRefGoogle Scholar
  19. 19.
    Merkel OM, Mintzer MA, Sitterberg J, et al. Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjugate Chem, 2009, 20: 1799–1806CrossRefGoogle Scholar
  20. 20.
    Lakshminarayanan A, Ravi VK, Tatineni R, et al. Efficient dendrimer–DNA complexation and gene delivery vector properties of nitrogen-core poly(propyl ether imine) dendrimer in mammalian cells. Bioconjugate Chem, 2013, 24: 1612–1623CrossRefGoogle Scholar
  21. 21.
    Thankappan UP, Madhusudana SN, Desai A, et al. Dendritic poly (ether imine) based gene delivery vector. Bioconjugate Chem, 2011, 22: 115–119CrossRefGoogle Scholar
  22. 22.
    Madhusudana SN, Padinjaremattathil Thankappan U, Desai A, et al. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly(ether imine) dendrimer. Int J Nanomed, 2014, 627Google Scholar
  23. 23.
    Perisé-Barrios AJ, Jiménez JL, Domínguez-Soto A, et al. Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. J Control Release, 2014, 184: 51–57CrossRefGoogle Scholar
  24. 24.
    Li J, Lepadatu AM, Zhu Y, et al. Examination of structure–activity relationship of viologen-based dendrimers as CXCR4 antagonists and gene carriers. Bioconjugate Chem, 2014, 25: 907–917CrossRefGoogle Scholar
  25. 25.
    Ferenc M, Pedziwiatr-Werbicka E, Nowak KE, et al. Phosphorus dendrimers as carriers of siRNA—characterisation of dendriplexes. Molecules, 2013, 18: 4451–4466CrossRefGoogle Scholar
  26. 26.
    Maksimenko AV, Mandrouguine V, Gottikh MB, et al. Optimisation of dendrimer-mediated gene transfer by anionic oligomers. J Gene Med, 2003, 5: 61–71CrossRefGoogle Scholar
  27. 27.
    Shcharbin D, Dzmitruk V, Shakhbazau A, et al. Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carrier. Pharmaceutics, 2011, 3: 458–473CrossRefGoogle Scholar
  28. 28.
    Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev, 2011, 40: 173–190CrossRefGoogle Scholar
  29. 29.
    Guo R, Shi X. Dendrimers in cancer therapeutics and diagnosis. Curr Drug Metab, 2012, 13: 1097–1109CrossRefGoogle Scholar
  30. 30.
    Shen M, Shi X. Dendrimer-based organic/inorganic hybrid NPs in biomedical applications. Nanoscale, 2010, 2: 1596–1610CrossRefGoogle Scholar
  31. 31.
    Zheng L, Zhu J, Shen M, et al. Targeted cancer cell inhibition using multifunctional dendrimer-entrapped gold NPs. Med- ChemComm, 2013, 4: 1001–1005Google Scholar
  32. 32.
    Svenson S, Tomalia DA. Dendrimers in biomedical applications —reflections on the field. Adv Drug Deliver Rev, 2005, 57: 2106–2129CrossRefGoogle Scholar
  33. 33.
    Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev, 2009, 109: 3141–3157CrossRefGoogle Scholar
  34. 34.
    Medina SH, Tekumalla V, Chevliakov MV, et al. n-Acetylgalactosamine- functionalized dendrimers as hepatic cancer celltargeted carriers. Biomaterials, 2011, 32: 4118–4129CrossRefGoogle Scholar
  35. 35.
    Uehara T, Ishii D, Uemura T, et al. γ-Glutamyl PAMAM dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjugate Chem, 2010, 21: 175–181CrossRefGoogle Scholar
  36. 36.
    Ortiz Mellet C, Benito JM, García Fernández JM. Preorganized, macromolecular, gene-delivery systems. Chem Eur J, 2010, 16: 6728–6742CrossRefGoogle Scholar
  37. 37.
    Li Y, Lai Y, Xu X, et al. Capsid-like supramolecular dendritic systems as pH-responsive nanocarriers for drug penetration and site-specific delivery. Nanomed-Nanotechnol Biol Med, 2016, 12: 355–364CrossRefGoogle Scholar
  38. 38.
    Wu W, Driessen W, Jiang X. Oligo(ethylene glycol)-based thermosensitive dendrimers and their tumor accumulation and penetration. J Am Chem Soc, 2014, 136: 3145–3155CrossRefGoogle Scholar
  39. 39.
    Caminade AM, Ouali A, Laurent R, et al. The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev, 2015, 44: 3890–3899CrossRefGoogle Scholar
  40. 40.
    Ganesh T. Improved biochemical strategies for targeted delivery of taxoids. Bioorg Medicinal Chem, 2007, 15: 3597–3623CrossRefGoogle Scholar
  41. 41.
    Cheng Y, Zhao L, Li Y, et al. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev, 2011, 40: 2673–2703CrossRefGoogle Scholar
  42. 42.
    Sailapu SK, Chattopadhyay A. Induction of electromotive force by an autonomously moving magnetic bot. Angew Chem Int Ed, 2014, 53: 1521–1524CrossRefGoogle Scholar
  43. 43.
    Jia CJ, Liu Y, Bongard H, et al. Very low temperature CO oxidation over colloidally deposited gold NPs on Mg(OH)2 and MgO. J Am Chem Soc, 2010, 132: 1520–1522CrossRefGoogle Scholar
  44. 44.
    Moscariello P, Ng DYW, Jansen M, et al. Brain delivery of multifunctional dendrimer protein bioconjugates. Adv Sci, 2018, 1700897–1522Google Scholar
  45. 45.
    Wang M, Liu H, Li L, et al. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun, 2014, 5: 3053CrossRefGoogle Scholar
  46. 46.
    Raghupathi KR, Guo J, Munkhbat O, et al. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli. Acc Chem Res, 2014, 47: 2200–2211CrossRefGoogle Scholar
  47. 47.
    Tian W, Ma Y. Theoretical and computational studies of dendrimers as delivery vectors. Chem Soc Rev, 2013, 42: 705–727CrossRefGoogle Scholar
  48. 48.
    Hu J, Xu T, Cheng Y. NMR insights into dendrimer-based host–guest systems. Chem Rev, 2012, 112: 3856–3891CrossRefGoogle Scholar
  49. 49.
    Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science, 1994, 266: 1226–1229CrossRefGoogle Scholar
  50. 50.
    Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc, 1995, 117: 4417–4418CrossRefGoogle Scholar
  51. 51.
    Al-Jamal KT, Al-Jamal W’T, Wang JTW, et al. Cationic poly-llysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano, 2013, 7: 1905–1917CrossRefGoogle Scholar
  52. 52.
    Fu F, Wu Y, Zhu J, et al. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interfaces, 2014, 6: 16416–16425CrossRefGoogle Scholar
  53. 53.
    He X, Alves CS, Oliveira N, et al. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surfs B-Biointerfaces, 2015, 125: 82–89CrossRefGoogle Scholar
  54. 54.
    Feng X, Cheng Y, Wu Q, et al. Stimuli response of cystamine-core dendrimer revealed by diffusion and NOE NMR studies. J Phys Chem B, 2011, 115: 3777–3783CrossRefGoogle Scholar
  55. 55.
    Hu W, Cheng L, Cheng L, et al. Redox and pH-responsive poly (amidoamine) dendrimer–poly (ethylene glycol) conjugates with disulfide linkages for efficient intracellular drug release. Colloids Surfs B-Biointerfaces, 2014, 123: 254–263CrossRefGoogle Scholar
  56. 56.
    Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B, 2013, 1: 4199–4211CrossRefGoogle Scholar
  57. 57.
    Zhu J, Zheng L, Wen S, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer- entrapped gold NPs. Biomaterials, 2014, 35: 7635–7646CrossRefGoogle Scholar
  58. 58.
    Zheng Y, Fu F, Zhang M, et al. Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Med Chem Commun, 2014, 5: 879–885CrossRefGoogle Scholar
  59. 59.
    Zhu J, Fu F, Xiong Z, et al. Dendrimer-entrapped gold NPs modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surfs BBiointerfaces, 2015, 133: 36–42CrossRefGoogle Scholar
  60. 60.
    She W, Luo K, Zhang C, et al. The potential of self-assembled, pH-responsive NPs of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34: 1613–1623CrossRefGoogle Scholar
  61. 61.
    She W, Li N, Luo K, et al. Dendronized heparin−doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials, 2013, 34: 2252–2264CrossRefGoogle Scholar
  62. 62.
    Li X, Takashima M, Yuba E, et al. PEGylated PAMAM dendrimer–doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials, 2014, 35: 6576–6584CrossRefGoogle Scholar
  63. 63.
    Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicinfunctionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA, 2006, 103: 16649–16654CrossRefGoogle Scholar
  64. 64.
    Kono K, Kojima C, Hayashi N, et al. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin. Biomaterials, 2008, 29: 1664–1675CrossRefGoogle Scholar
  65. 65.
    Wu S, Qi R, Kuang H, et al. pH-responsive drug delivery by amphiphilic copolymer through boronate-catechol complexation. ChemPlusChem, 2013, 78: 175–184CrossRefGoogle Scholar
  66. 66.
    Jing B, Zhu Y. Disruption of supported lipid bilayers by semihydrophobic NPs. J Am Chem Soc, 2011, 133: 10983–10989CrossRefGoogle Scholar
  67. 67.
    Zhang W, Tichy SE, Pérez LM, et al. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol−disulfide exchange depends on the structure of the dendrimer. J Am Chem Soc, 2003, 125: 5086–5094CrossRefGoogle Scholar
  68. 68.
    Hammer BAG, Baumgarten M, Müllen K. Covalent attachment and release of small molecules from functional polyphenylene dendrimers. Chem Commun, 2014, 50: 2034–2036CrossRefGoogle Scholar
  69. 69.
    Brülisauer L, Kathriner N, Prenrecaj M, et al. Tracking the bioreduction of disulfide-containing cationic dendrimers. Angew Chem Int Ed, 2012, 51: 12454–12458CrossRefGoogle Scholar
  70. 70.
    Peng SF, Su CJ, Wei MC, et al. Effects of the nanostructure of dendrimer/DNA complexes on their endocytosis and gene expression. Biomaterials, 2010, 31: 5660–5670CrossRefGoogle Scholar
  71. 71.
    Lim J, Lo ST, Hill S, et al. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol Pharm, 2012, 9: 404–412CrossRefGoogle Scholar
  72. 72.
    Lim J, Chouai A, Lo ST, et al. Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconjugate Chem, 2009, 20: 2154–2161CrossRefGoogle Scholar
  73. 73.
    Lee C, Lo ST, Lim J, et al. Design, synthesis and biological assessment of a triazine dendrimer with approximately 16 paclitaxel groups and 8 PEG groups. Mol Pharm, 2013, 10: 4452–4461CrossRefGoogle Scholar
  74. 74.
    Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6: 12273–12286CrossRefGoogle Scholar
  75. 75.
    Lee SJ, Jeong YI, Park HK, et al. Enzyme-responsive doxorubicin release from dendrimer NPs for anticancer drug delivery. Int J Nanomed, 2015, 5489Google Scholar
  76. 76.
    Kojima C, Suehiro T, Watanabe K, et al. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater, 2013, 9: 5673–5680CrossRefGoogle Scholar
  77. 77.
    Satsangi A, Roy SS, Satsangi RK, et al. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol Pharm, 2014, 11: 1906–1918CrossRefGoogle Scholar
  78. 78.
    Choi SK, Verma M, Silpe J, et al. A photochemical approach for controlled drug release in targeted drug delivery. Bioorg Medicinal Chem, 2012, 20: 1281–1290CrossRefGoogle Scholar
  79. 79.
    Choi SK, Thomas TP, Li MH, et al. Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem Photobiol Sci, 2012, 11: 653CrossRefGoogle Scholar
  80. 80.
    Thota BNS, Urner LH, Haag R. Supramolecular architectures of dendritic amphiphiles in water. Chem Rev, 2016, 116: 2079–2102CrossRefGoogle Scholar
  81. 81.
    Greig LM, Philp D. Applying biological principles to the assembly and selection of synthetic superstructures. Chem Soc Rev, 2001, 30: 287–302CrossRefGoogle Scholar
  82. 82.
    Jiang L, Chen W, Zhou S, et al. Dendritic phospholipid-based drug delivery systems. Biomater Sci, 2018, 491Google Scholar
  83. 83.
    Hu XY, Liu X, Zhang W, et al. Controllable construction of biocompatible supramolecular micelles and vesicles by watersoluble phosphate pillar[5, 6]arenes for selective anti-cancer drug delivery. Chem Mater, 2016, 28: 3778–3788CrossRefGoogle Scholar
  84. 84.
    Xu X, Li Y, Li H, et al. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Small, 2014, 10: 1133–1140CrossRefGoogle Scholar
  85. 85.
    Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci USA, 2015, 112: 2978–2983CrossRefGoogle Scholar
  86. 86.
    Zhou T, Chen P, Niu L, et al. pH-responsive size-tunable selfassembled DNA dendrimers. Angew Chem Int Ed, 2012, 51: 11271–11274CrossRefGoogle Scholar
  87. 87.
    Liu Y, Bryantsev VS, Diallo MS, et al. PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc, 2009, 131: 2798–2799CrossRefGoogle Scholar
  88. 88.
    Li Y, Xiao W, Xiao K, et al. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem, 2012, 124: 2918–2923CrossRefGoogle Scholar
  89. 89.
    Gillies ER, Jonsson TB, Fréchet JMJ. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc, 2004, 126: 11936–11943CrossRefGoogle Scholar
  90. 90.
    Gillies ER, Fréchet JMJ. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem, 2005, 16: 361–368CrossRefGoogle Scholar
  91. 91.
    El Malah T, Ciesielski A, Piot L, et al. Conformationally preorganized and pH-responsive flat dendrons: synthesis and selfassembly at the liquid–solid interface. Nanoscale, 2012, 4: 467–472CrossRefGoogle Scholar
  92. 92.
    Criscione JM, Le BL, Stern E, et al. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials, 2009, 30: 3946–3955CrossRefGoogle Scholar
  93. 93.
    Chen L, Chen T, Fang W, et al. Synthesis and pH-responsive “schizophrenic” aggregation of a linear-dendron-like polyampholyte based on oppositely charged polypeptides. Biomacromolecules, 2013, 14: 4320–4330CrossRefGoogle Scholar
  94. 94.
    She W, Pan D, Luo K, et al. PEGylated dendrimer-doxorubicin cojugates as pH-sensitive drug delivery systems: synthesis and in vitro characterization. J Biomed nanotechnol, 2015, 11: 964–978CrossRefGoogle Scholar
  95. 95.
    Takemoto H, Miyata K, Hattori S, et al. Acidic pH-responsive siRNA conjugate for reversible carrier stability and accelerated endosomal escape with reduced IFNα-associated immune response. Angew Chem, 2013, 125: 6338–6341CrossRefGoogle Scholar
  96. 96.
    Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered NPs for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA, 2016, 113: 4164–4169CrossRefGoogle Scholar
  97. 97.
    Shao Y, Shi C, Xu G, et al. Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl Mater Interfaces, 2014, 6: 10381–10392CrossRefGoogle Scholar
  98. 98.
    Li Y, Li Y, Zhang X, et al. Supramolecular PEGylated dendritic systems as pH/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and NIR imaging. Theranostics, 2016, 6: 1293–1305CrossRefGoogle Scholar
  99. 99.
    Zhang C, Pan D, Luo K, et al. Dendrimer–doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym Chem, 2014, 5: 5227–5235CrossRefGoogle Scholar
  100. 100.
    Zhang C, Pan D, Luo K, et al. Peptide dendrimer-doxorubicin conjugate-based NPs as an enzyme-responsive drug delivery system for cancer therapy. Adv Healthcare Mater, 2015, 3: 1299–1308CrossRefGoogle Scholar
  101. 101.
    Li N, Li N, Yi Q, et al. Amphiphilic peptide dendritic copolymerdoxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials, 2014, 35: 9529–9545CrossRefGoogle Scholar
  102. 102.
    Harnoy AJ, Rosenbaum I, Tirosh E, et al. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J Am Chem Soc, 2014, 136: 7531–7534CrossRefGoogle Scholar
  103. 103.
    Sun L, Ma X, Dong CM, et al. NIR-responsive and lectin-binding doxorubicin-loaded nanomedicine from Janus-type dendritic PAMAM amphiphiles. Biomacromolecules, 2012, 13: 3581–3591CrossRefGoogle Scholar
  104. 104.
    Liu ZX, Feng Y, Zhao ZY, et al. A new class of dendritic metallogels with multiple stimuli-responsiveness and as templates for the in situ synthesis of silver NPs. Chem Eur J, 2014, 20: 533–541CrossRefGoogle Scholar
  105. 105.
    Huang S, Xu Y, Xie M, et al. Synthesis of magnetic CoFe2O4/g- C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surfs A-Physicochem Eng Aspects, 2015, 478: 71–80CrossRefGoogle Scholar
  106. 106.
    Li Y, Xu X, Zhang X, et al. Tumor-specific multiple stimuliactivated dendrimeric nanoassemblies with metabolic blockade surmount chemotherapy resistance. ACS Nano, 2017, 11: 416–429CrossRefGoogle Scholar
  107. 107.
    Kesharwani P, Gothwal A, Iyer AK, et al. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discovery Today, 2018, 23: 300–314CrossRefGoogle Scholar
  108. 108.
    Fan Y, Yuan S, Huo MM, et al. Spatial controlled multistage nanocarriers through hybridization of dendrimers and gelatin NPs for deep penetration and therapy into tumor tissue. Nanomed- Nanotechnol Biol Med, 2017, 13: 1399–1410CrossRefGoogle Scholar
  109. 109.
    Sun Q, Sun X, Ma X, et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater, 2014, 26: 7615–7621CrossRefGoogle Scholar
  110. 110.
    Zhang X, Zhang Z, Xu X, et al. Bioinspired therapeutic dendrimers as efficient peptide drugs based on supramolecular interactions for tumor inhibition. Angew Chem Int Ed, 2015, 54: 4289–4294CrossRefGoogle Scholar
  111. 111.
    Shao S, Zhou Q, Si J, et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng, 2017, 1: 745–757CrossRefGoogle Scholar
  112. 112.
    Naldini L. Gene therapy returns to centre stage. Nature, 2015, 526: 351–360CrossRefGoogle Scholar
  113. 113.
    Lai YH, Lin CC, Chen SH, et al. Tumor-specific suicide gene therapy for hepatocellular carcinoma by transcriptionally targeted retroviral replicating vectors. Gene Ther, 2015, 22: 155–162CrossRefGoogle Scholar
  114. 114.
    Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet, 2003, 4: 346–358CrossRefGoogle Scholar
  115. 115.
    Eichman JD, Bielinska AU, Kukowska-Latallo JF, et al. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical Sci Tech Today, 2000, 3: 232–245CrossRefGoogle Scholar
  116. 116.
    Qamhieh K, Nylander T, Black CF, et al. Complexes formed between DNA and poly(amido amine) dendrimers of different generations–modelling DNA wrapping and penetration. Phys Chem Chem Phys, 2014, 16: 13112–13122CrossRefGoogle Scholar
  117. 117.
    Pavan GM, Danani A, Pricl S, et al. Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand “sacrifice” and screening can enhance binding. J Am Chem Soc, 2009, 131: 9686–9694CrossRefGoogle Scholar
  118. 118.
    Shcharbin D, Pedziwiatr E, Bryszewska M. How to study dendriplexes I: Characterization. J Control Release, 2009, 135: 186–197CrossRefGoogle Scholar
  119. 119.
    Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliver Rev, 2005, 57: 2177–2202CrossRefGoogle Scholar
  120. 120.
    Yezhelyev MV, Qi L, O'Regan RM, et al. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc, 2008, 130: 9006–9012CrossRefGoogle Scholar
  121. 121.
    Inoue Y, Kurihara R, Tsuchida A, et al. Efficient delivery of siRNA using dendritic poly(l-lysine) for loss-of-function analysis. J Control Release, 2008, 126: 59–66CrossRefGoogle Scholar
  122. 122.
    Ma D, Lin QM, Zhang LM, et al. A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials, 2014, 35: 4357–4367CrossRefGoogle Scholar
  123. 123.
    Kukowska-Latallo JF, Bielinska AU, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA, 1996, 93: 4897–4902CrossRefGoogle Scholar
  124. 124.
    Santos JL, Oramas E, Pêgo AP, et al. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. J Control Release, 2009, 134: 141–148CrossRefGoogle Scholar
  125. 125.
    Wang P, Zhao XH, Wang ZY, et al. Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment. Cancer Lett, 2010, 298: 34–49CrossRefGoogle Scholar
  126. 126.
    Dufès C, Keith WN, Bilsland A, et al. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res, 2005, 65: 8079–8084CrossRefGoogle Scholar
  127. 127.
    Navarro G, Maiwald G, Haase R, et al. Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. J Control Release, 2010, 146: 99–105CrossRefGoogle Scholar
  128. 128.
    Chaplot SP, Rupenthal ID. Dendrimers for gene delivery-a potential approach for ocular therapy? J Pharm Pharmacol, 2014, 66: 542–556CrossRefGoogle Scholar
  129. 129.
    Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliver, 2013, 10: 1687–1698CrossRefGoogle Scholar
  130. 130.
    Haensler J, Szoka Jr. FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem, 1993, 4: 372–379CrossRefGoogle Scholar
  131. 131.
    Luo K, Li C, Wang G, et al. Peptide dendrimers as efficient and biocompatible gene delivery vectors: Synthesis and in vitro characterization. J Control Release, 2011, 155: 77–87CrossRefGoogle Scholar
  132. 132.
    Liu H, Wang H, Yang W, et al. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc, 2012, 134: 17680–17687CrossRefGoogle Scholar
  133. 133.
    Liu X, Liu C, Laurini E, et al. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm, 2012, 9: 470–481CrossRefGoogle Scholar
  134. 134.
    Liu XX, Rocchi P, Qu FQ, et al. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem, 2009, 4: 1302–1310CrossRefGoogle Scholar
  135. 135.
    Yang J, Liu Y, Wang H, et al. The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomaterials, 2012, 33: 604–613CrossRefGoogle Scholar
  136. 136.
    Pantos A, Tsogas I, Paleos CM. Guanidinium group: A versatile moiety inducing transport and multicompartmentalization in complementary membranes. BioChim Biophysica Acta (BBA)-Biomembranes, 2008, 1778: 811–823CrossRefGoogle Scholar
  137. 137.
    Tabujew I, Freidel C, Krieg B, et al. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation. Macromol Rapid Commun, 2014, 35: 1191–1197CrossRefGoogle Scholar
  138. 138.
    Wen Y, Guo Z, Du Z, et al. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials, 2012, 33: 8111–8121CrossRefGoogle Scholar
  139. 139.
    Chang J, Xu X, Li H, et al. Components simulation of viral envelope via amino acid modified chitosans for efficient nucleic acid delivery: in vitro and in vivo study. Adv Funct Mater, 2013, 23: 2691–2699CrossRefGoogle Scholar
  140. 140.
    Choi JS, Nam K, Park JY, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release, 2004, 99: 445–456CrossRefGoogle Scholar
  141. 141.
    Nam HY, Nam K, Hahn HJ, et al. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials, 2009, 30: 665–673CrossRefGoogle Scholar
  142. 142.
    Sanclimens G, Shen H, Giralt E, et al. Synthesis and screening of a small library of proline-based biodendrimers for use as delivery agents. Biopolymers, 2010, 80: 800–814CrossRefGoogle Scholar
  143. 143.
    Kim JB, Choi JS, Nam K, et al. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Control Release, 2006, 114: 110–117CrossRefGoogle Scholar
  144. 144.
    Kim T, Baek J, Yoon JK, et al. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading to transfection. Bioconjugate Chem, 2007, 18: 309–317CrossRefGoogle Scholar
  145. 145.
    Kim TI, Baek JU, Zhe Bai C, et al. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials, 2007, 28: 2061–2067CrossRefGoogle Scholar
  146. 146.
    Kim TI, Bai CZ, Nam K, et al. Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems. J Control Release, 2009, 136: 132–139CrossRefGoogle Scholar
  147. 147.
    Nam HY, Hahn HJ, Nam K, et al. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int J Pharm, 2008, 363: 199–205CrossRefGoogle Scholar
  148. 148.
    How SE, Unciti-Broceta A, Sánchez-Martín RM, et al. Solid-phase synthesis of a lysine-capped bis-dendron with remarkable DNA delivery abilities. Org Biomol Chem, 2008, 6: 2266CrossRefGoogle Scholar
  149. 149.
    Kim ID, Lim CM, Kim JB, et al. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release, 2010, 142: 422–430CrossRefGoogle Scholar
  150. 150.
    Aldawsari H, Edrada-Ebel RA, Blatchford DR, et al. Enhanced gene expression in tumors after intravenous administration of arginine-, lysine- and leucine-bearing polypropylenimine polyplex. Biomaterials, 2011, 32: 5889–5899CrossRefGoogle Scholar
  151. 151.
    Jang SH, Choi SJ, Oh JH, et al. Nonviral gene delivery to human ovarian cancer cells using arginine-grafted PAMAM dendrimer. Drug Dev Ind Pharm, 2011, 37: 41–46CrossRefGoogle Scholar
  152. 152.
    Shah N, Steptoe RJ, Parekh HS. Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. J Peptide Sci, 2011, 17: 470–478CrossRefGoogle Scholar
  153. 153.
    Luo K, Li C, Li L, et al. Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials, 2012, 33: 4917–4927CrossRefGoogle Scholar
  154. 154.
    Kim ID, Shin JH, Lee HK, et al. Intranasal delivery of HMGB1- binding heptamer peptide confers a robust neuroprotection in the postischemic brain. NeuroSci Lett, 2012, 525: 179–183CrossRefGoogle Scholar
  155. 155.
    Son SJ, Yu GS, Choe YH, et al. PAMAM dendrimers conjugated with L-arginine and γ-aminobutyric acid as novel polymeric gene delivery carriers. Bull Korean Chem Soc, 2013, 34: 579–584CrossRefGoogle Scholar
  156. 156.
    Liu C, Liu X, Rocchi P, et al. Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo. Bioconjugate Chem, 2014, 25: 521–532CrossRefGoogle Scholar
  157. 157.
    Bai CZ, Choi S, Nam K, et al. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int J Pharm, 2013, 445: 79–87CrossRefGoogle Scholar
  158. 158.
    Tziveleka LA, Psarra AMG, Tsiourvas D, et al. Synthesis and characterization of guanidinylated poly(propylene imine) dendrimers as gene transfection agents. J Control Release, 2007, 117: 137–146CrossRefGoogle Scholar
  159. 159.
    Li YF, Morcos PA. Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo. Bioconjugate Chem, 2008, 19: 1464–1470CrossRefGoogle Scholar
  160. 160.
    Chi B, Park SJ, Park MH, et al. Oligopeptide delivery carrier for osteoclast precursors. Bioconjugate Chem, 2010, 21: 1473–1478CrossRefGoogle Scholar
  161. 161.
    Yu H, Nie Y, Dohmen C, et al. Epidermal growth factor–PEG functionalized PAMAM-pentaethylenehexamine dendron for targeted gene delivery produced by click chemistry. Biomacromolecules, 2011, 12: 2039–2047CrossRefGoogle Scholar
  162. 162.
    Felber AE, Castagner B, Elsabahy M, et al. siRNA nanocarriers based on methacrylic acid copolymers. J Control Release, 2011, 152: 159–167CrossRefGoogle Scholar
  163. 163.
    Al Robaian M, Chiam KY, Blatchford DR, et al. Therapeutic efficacy of intravenously administered transferrin-conjugated dendriplexes on prostate carcinomas. Nanomedicine, 2014, 9: 421–434CrossRefGoogle Scholar
  164. 164.
    Daftarian P, Kaifer AE, Li W, et al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigenpresenting cells. Cancer Res, 2011, 71: 7452–7462CrossRefGoogle Scholar
  165. 165.
    Han L, Ma H, Guo Y, et al. pH-controlled delivery of NPs into tumor cells. Adv Healthcare Mater, 2013, 2: 1435–1439CrossRefGoogle Scholar
  166. 166.
    Benns JM, Choi JS, Mahato RI, et al. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly (L-lysine) comb shaped polymer. Bioconjugate Chem, 2000, 11: 637–645CrossRefGoogle Scholar
  167. 167.
    Kostiainen MA, Rosilo H. Low-molecular-weight dendrons for DNA binding and release by reduction-triggered degradation of multivalent interactions. Chem Eur J, 2009, 15: 5656–5660CrossRefGoogle Scholar
  168. 168.
    Beloor J, Ramakrishna S, Nam K, et al. Effective gene delivery into human stem cells with a cell-targeting peptide-modified bioreducible polymer. Small, 2015, 11: 2069–2079CrossRefGoogle Scholar
  169. 169.
    Liu Z, Zhang Z, Zhou C, et al. Hydrophobic modifications of cationic polymers for gene delivery. Prog Polymer Sci, 2010, 35: 1144–1162CrossRefGoogle Scholar
  170. 170.
    Mastrobattista E, Hennink WE. Charged for success. Nat Mater, 2012, 11: 10–12CrossRefGoogle Scholar
  171. 171.
    Wimmer N, Marano RJ, Kearns PS, et al. Syntheses of polycationic dendrimers on lipophilic peptide core for complexation and transport of oligonucleotides. Bioorg Medicinal Chem Lett, 2002, 12: 2635–2637CrossRefGoogle Scholar
  172. 172.
    Yu T, Liu X, Bolcato-Bellemin AL, et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed, 2012, 51: 8478–8484CrossRefGoogle Scholar
  173. 173.
    Yuba E, Nakajima Y, Tsukamoto K, et al. Effect of unsaturated alkyl chains on transfection activity of poly(amidoamine) dendron- bearing lipids. J Control Release, 2012, 160: 552–560CrossRefGoogle Scholar
  174. 174.
    Kono K, Ikeda R, Tsukamoto K, et al. Polyamidoamine dendronbearing lipids as a nonviral vector: influence of dendron generation. Bioconjugate Chem, 2012, 23: 871–879CrossRefGoogle Scholar
  175. 175.
    Malhotra S, Bauer H, Tschiche A, et al. Glycine-terminated dendritic amphiphiles for nonviral gene delivery. Biomacromolecules, 2012, 13: 3087–3098CrossRefGoogle Scholar
  176. 176.
    Xu X, Jiang Q, Zhang X, et al. Virus-inspired mimics: self-assembly of dendritic lipopeptides into arginine-rich nanovectors for improving gene delivery. J Mater Chem B, 2015, 3: 7006–7010CrossRefGoogle Scholar
  177. 177.
    Hashemi M. Gene transfer enhancement by alkylcarboxylation of poly(propylenimine). Nanomedicine J, 2013, 1: 55–62Google Scholar
  178. 178.
    Morales-Sanfrutos J, Megia-Fernandez A, Hernandez-Mateo F, et al. Alkyl sulfonyl derivatized PAMAM-G2 dendrimers as nonviral gene delivery vectors with improved transfection efficiencies. Org Biomol Chem, 2011, 9: 851–864CrossRefGoogle Scholar
  179. 179.
    Tschiche A, Thota BNS, Neumann F, et al. Crosslinked redoxresponsive micelles based on lipoic acid-derived amphiphiles for enhanced siRNA delivery. Macromol Biosci, 2016, 16: 811–823CrossRefGoogle Scholar
  180. 180.
    Baigude H, Su J, McCarroll J, et al. In vivo delivery of RNAi by reducible interfering NPs (iNOPs). ACS Med Chem Lett, 2013, 4: 720–723CrossRefGoogle Scholar
  181. 181.
    Liu X, Wang Y, Chen C, et al. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species. Adv Funct Mater, 2016, 26: 8594–8603CrossRefGoogle Scholar
  182. 182.
    Xu X, Jian Y, Li Y, et al. Bio-inspired supramolecular hybrid dendrimers self-assembled from low-generation peptide dendrons for highly efficient gene delivery and biological tracking. ACS Nano, 2014, 8: 9255–9264CrossRefGoogle Scholar
  183. 183.
    Cui D, Huang P, Zhang C, et al. Dendrimer-modified gold nanorods as efficient controlled gene delivery system under nearinfrared light irradiation. J Control Release, 2011, 152: e137–e139CrossRefGoogle Scholar
  184. 184.
    Kong L, Alves CS, Hou W, et al. RGD peptide-modified dendrimer- entrapped gold NPs enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces, 2015, 7: 4833–4843CrossRefGoogle Scholar
  185. 185.
    Shan Y, Luo T, Peng C, et al. Gene delivery using dendrimerentrapped gold NPs as nonviral vectors. Biomaterials, 2012, 33: 3025–3035CrossRefGoogle Scholar
  186. 186.
    Kim ST, Chompoosor A, Yeh YC, et al. Dendronized gold NPs for siRNA delivery. Small, 2012, 8: 3253–3256CrossRefGoogle Scholar
  187. 187.
    Figueroa ER, Lin AY, Yan J, et al. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials, 2014, 35: 1725–1734CrossRefGoogle Scholar
  188. 188.
    Agrawal A, Min DH, Singh N, et al. Functional delivery of siRNA in mice using dendriworms. ACS Nano, 2009, 3: 2495–2504CrossRefGoogle Scholar
  189. 189.
    Liu WM, Xue YN, He WT, et al. Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary complexes: A novel strategy for magnetofection. J Control Release, 2011, 152: e159–e160CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lei Jiang (姜雷)
    • 1
    • 2
  • Sensen Zhou (周森森)
    • 1
  • Xiaoke Zhang (张小可)
    • 1
  • Wei Wu (武伟)
    • 1
  • Xiqun Jiang (蒋锡群)
    • 1
  1. 1.MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.State Key Laboratory of Natural Medicines, Department of PharmaceuticsChina Pharmaceutical UniversityNanjingChina

Personalised recommendations