Science China Materials

, Volume 61, Issue 4, pp 516–524 | Cite as

Corrosion resistance and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface modified by a focused fiber laser

  • Xianda Xue (薛贤达)
  • Chengpeng Ma (马程鹏)
  • Hongjuan An (安红娟)
  • Yan Li (李岩)
  • Yingchun Guan (管迎春)


The corrosion resistance and cytocompatibility of Ti-20Zr-10Nb-4Ta (TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy (SEM) measurements indicated that laser treatment on TZNT alloy generated groove morphologies with the width of ∼40 μm and the depth of ∼10 μm on the surface. The water contact angles along the groove direction decreased by 51% compared with that of the untreated alloy. The laser treatment promoted the oxidation of metallic Ti, Zr and Nb and produced more stable oxides on surface. The corrosion potential increased by 50% and corrosion current density decreased by 72% compared with that of the untreated alloy in the anodic polarization test for the alloy in Hank’s solution at 37°C. This indicated the improvement of the corrosion resistance by laser treatment. The cytotoxicity testing results showed that the laser-treated TZNT alloy performed similar MC3T3-E1 cell viability compared with the untreated alloy. The cells displayed oriented growth along the groove direction due to the increased hydrophilicity. This novel material may be a new candidate in orthopedics and dentistry implantations fields.


laser Ti-20Zr-10Nb-4Ta corrosion resistance cytocompatibility 



本文系统研究了激光表面改性对Ti-20Zr-10Nb-4Ta(TZNT)合金耐腐蚀性和细胞相容性的影响. 扫描电镜观察结果表明, 激光改性能够在TZNT合金表面制造沟槽结构, 沟槽宽度大概40 μm, 沟槽深度大概10 μm. 与未处理样品相比, 改性样品表面沿沟槽方向的水接触角减小了51%. 激光处理过程使样品表面金属态的Ti、 Zr和Nb转变成了稳定的氧化态. 在37°C的Hank’s溶液中进行动电位极化测试发现, 改性样品的自腐蚀电位升高了50%, 自腐蚀电流密度下降了72%, 说明激光改性能够提高TZNT合金的耐腐蚀能力. MTT实验结果表明小鼠成骨细胞(MC3T3-E1)在改性样品和非改性样品表面具有相似的细胞活性. 从细胞形貌可以看出, 细胞出现了沿沟槽方向生长的导向性. 综上所述, 新型生物医用TZNT合金有望成为骨科和牙科植入领域的替代材料.



This work was supported by the National Natural Science Foundation of China (NSFC, 51771011) and the Fundamental Research Funds for the Central Universities (KG12002601).


  1. 1.
    Deligianni D. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 2001, 22: 1241–1251CrossRefGoogle Scholar
  2. 2.
    Scarano A, Piattelli M, Caputi S, et al. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol, 2004, 75: 292–296CrossRefGoogle Scholar
  3. 3.
    El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome as-sembly on Ti-6Al-4V implant material in vitro. J Biomed Mater Res, 1998, 41: 30–40CrossRefGoogle Scholar
  4. 4.
    Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater, 2012, 8: 3888–3903CrossRefGoogle Scholar
  5. 5.
    Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met, 2016, 35: 661–671CrossRefGoogle Scholar
  6. 6.
    Qu WT, Sun XG, Yuan BF, et al. Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Met, 2017, 36: 478–484CrossRefGoogle Scholar
  7. 7.
    Jin M, Lu X, Qiao Y, et al. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys. Rare Met, 2016, 35: 140–148CrossRefGoogle Scholar
  8. 8.
    Oliveira NTC, Ferreira EA, Duarte LT, et al. Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim Acta, 2006, 51: 2068–2075CrossRefGoogle Scholar
  9. 9.
    Elias LM, Schneider SG, Schneider S, et al. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mater Sci Eng-A, 2006, 432: 108–112CrossRefGoogle Scholar
  10. 10.
    Fukuda A, Takemoto M, Saito T, et al. Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater, 2011, 7: 1379–1386CrossRefGoogle Scholar
  11. 11.
    Ozan S, Lin J, Li Y, et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications. J Mech Behav BioMed Mater, 2017, 75: 119–127CrossRefGoogle Scholar
  12. 12.
    Xue P, Li Y, Li K, et al. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy. Mater Sci Eng-C, 2015, 50: 179–186CrossRefGoogle Scholar
  13. 13.
    Xiong C, Xue P, Sun B, et al. Effect of annealing temperature on the microstructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy. Mater Sci Eng-A, 2017, 688: 464–469CrossRefGoogle Scholar
  14. 14.
    Xiong C, Yao L, Yuan B, et al. Strain induced martensite stabilization and shape memory effect of Ti–20Zr–10Nb–4Ta alloy. Mater Sci Eng-A, 2016, 658: 28–32CrossRefGoogle Scholar
  15. 15.
    Soboyejo WO, Nemetski B, Allameh S, et al. Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res, 2002, 62: 56–72CrossRefGoogle Scholar
  16. 16.
    Ohtsu N, Kozuka T, Yamane M, et al. Surface chemistry and osteoblast-like cell response on a titanium surface modified by a focused Nd:YAG laser. Surf Coatings Tech, 2017, 309: 220–226CrossRefGoogle Scholar
  17. 17.
    Man HC, Cui ZD, Yue TM. Corrosion properties of laser surface melted NiTi shape memory alloy. Scripta Mater, 2001, 45: 1447–1453CrossRefGoogle Scholar
  18. 18.
    Wong MH, Cheng FT, Pang GKH, et al. Characterization of oxide film formed on NiTi by laser oxidation. Mater Sci Eng-A, 2007, 448: 97–103CrossRefGoogle Scholar
  19. 19.
    Lawrence J, Hao L, Chew HR. On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surf Coatings Tech, 2006, 200: 5581–5589CrossRefGoogle Scholar
  20. 20.
    Chen J, Ulerich JP, Abelev E, et al. An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces. Mater Sci Eng-C, 2009, 29: 1442–1452CrossRefGoogle Scholar
  21. 21.
    Ulerich JP, Ionescu LC, Chen J, et al. Modifications of Ti-6Al-4V surfaces by direct-write laser machining of linear grooves. Proc of SPIE, 2007, 6458: 645819CrossRefGoogle Scholar
  22. 22.
    Mukherjee S, Dhara S, Saha P. Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: an in vitro study. Int J Adv Manuf Technol, 2015, 76: 5–15CrossRefGoogle Scholar
  23. 23.
    Raimbault O, Benayoun S, Anselme K, et al. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Mater Sci Eng-C, 2016, 69: 311–320CrossRefGoogle Scholar
  24. 24.
    Chan CW, Lee S, Smith G, et al. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen. Appl Surf Sci, 2016, 367: 80–90CrossRefGoogle Scholar
  25. 25.
    Saebnoori E, Shahrabi T, Sanjabi S, et al. Surface characteristics and electrochemical behaviour of sputter-deposited NiTi thin film. Philos Mag, 2015, 95: 1696–1716CrossRefGoogle Scholar
  26. 26.
    Li K, Li Y, Huang X, et al. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films. Appl Surf Sci, 2017, 414: 63–67CrossRefGoogle Scholar
  27. 27.
    Kumari R, Scharnweber T, Pfleging W, et al. Laser surface textured titanium alloy (Ti–6Al–4V)–Part II–Studies on bio-compatibility. Appl Surf Sci, 2015, 357: 750–758CrossRefGoogle Scholar
  28. 28.
    Liang C, Wang H, Yang J, et al. Biocompatibility of the micropatterned NiTi surface produced by femtosecond laser. Appl Surf Sci, 2012, 261: 337–342CrossRefGoogle Scholar
  29. 29.
    Ohtsu N, Kozuka T, Hirano M, et al. Electrolyte effects on the surface chemistry and cellular response of anodized titanium. Appl Surf Sci, 2015, 349: 911–915CrossRefGoogle Scholar
  30. 30.
    Dumas V, Rattner A, Vico L, et al. Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization. J Biomed Mater Res, 2012, 100A: 3108–3116CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xianda Xue (薛贤达)
    • 1
  • Chengpeng Ma (马程鹏)
    • 2
  • Hongjuan An (安红娟)
    • 1
  • Yan Li (李岩)
    • 1
    • 3
  • Yingchun Guan (管迎春)
    • 2
    • 4
    • 5
  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.School of Mechanical Engineering and AutomationBeihang UniversityBeijingChina
  3. 3.Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijingChina
  4. 4.National Engineering Laboratory of Additive Manufacturing for Large Metallic ComponentsBeihang UniversityBeijingChina
  5. 5.International Research Institute for Multidisciplinary ScienceBeihang UniversityBeijingChina

Personalised recommendations