Skip to main content
Log in

Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter

紫外光辐照全氢聚硅氮烷制备超薄二氧化硅膜及其在有机晶体管和反相器中的应用

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

二氧化硅是一种常见且非常重要的介电材料, 但是其传统的制备方法例如物理气相沉积, 化学气相沉积等无法适应大规模生产以及有机电子工业. 本论文介绍了一种简单的制备二氧化硅超薄膜的方法, 即利用紫外光辐照全氢聚硅氮烷, 使其转化为二氧化硅. 这种方法所制备的二氧化硅超薄膜具有超平的表面以及非常低的漏电. 此外, 我们还将该二氧化硅超薄膜应用于有机晶体管和反相器电路中, 这些器件均表现出良好的电学性能. 这些结果表明该方法制备的二氧化硅超薄膜具有很好的实际应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tang C, Chen SC, Shang Q, et al. Asymmetric indenothiophenebased non-fullerene acceptors for efficient polymer solar cells. Sci China Mater, 2017, 60: 707–716

    Article  Google Scholar 

  2. Wang L, Huo Z, Tao L, et al. Effect of the self-assembled gel network formed from a low molecular mass organogelator on the electron kinetics in quasi-solid-state dye-sensitized solar cells. Sci China Mater, 2016, 59: 787–796

    Article  Google Scholar 

  3. Luo B, Jiang Y, Mao L, et al. Colorful flexible polymer tandem solar cells. J Mater Chem C, 2017, 5: 7884–7889

    Article  Google Scholar 

  4. Zhang C, Luo Q, Wu H, et al. Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells. Org Electron, 2017, 45: 190–197

    Article  Google Scholar 

  5. Wu CC, Theiuss SD, Gu G, et al. Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates. IEEE Electron Device Lett, 1997, 18: 609–612

    Article  Google Scholar 

  6. Jou JH, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C, 2015, 3: 2974–3002

    Article  Google Scholar 

  7. Yang X, Xu X, Zhou G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J Mater Chem C, 2015, 3: 913–944

    Article  Google Scholar 

  8. Kergoat L, Piro B, Berggren M, et al. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem, 2011, 402: 1813–1826

    Article  Google Scholar 

  9. Liao C, Yan F. Organic semiconductors in organic thin-film transistor-based chemical and biological sensors. Polym Rev, 2013, 53: 352–406

    Article  Google Scholar 

  10. Wang H, Deng L, Tang Q, et al. Flexible organic single-crystal field-effect transistor for ultra-sensitivity strain sensing. IEEE Electron Device Lett, 2017, 38: 1598–1601

    Article  Google Scholar 

  11. Ji Z, Liu M, Shang L, et al. Optimizing molecular orientation for high performance organic thin film transistors based on titanyl phthalocyanine. J Mater Chem, 2009, 19: 5507–5509

    Article  Google Scholar 

  12. Mizukami M, Hirohata N, Iseki T, et al. Flexible AM OLED panel driven by bottom-contact OTFTs. IEEE Electron Device Lett, 2006, 27: 249–251

    Article  Google Scholar 

  13. Sheraw CD, Zhou L, Huang JR, et al. Organic thin-film transistordriven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl Phys Lett, 2002, 80: 1088–1090

    Article  Google Scholar 

  14. Afqir M, Tachafine A, Fasquelle D, et al. Synthesis, structural and dielectric properties of Ho-doped SrBi2Nb2O9 prepared by Coprecipitation method. Sci China Mater, 2016, 59: 921–926

    Article  Google Scholar 

  15. Xu M, Xiang L, Xu T, et al. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric. Appl Phys Lett, 2017, 111: 183302

    Article  Google Scholar 

  16. Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging? A review. Packag Technol Sci, 2003, 16: 149–158

    Article  Google Scholar 

  17. Osman MA, Mittal V, Morbidelli M, et al. Polyurethane adhesive nanocomposites as gas permeation barrier. Macromolecules, 2003, 36: 9851–9858

    Article  Google Scholar 

  18. Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films, 1990, 191: 91–126

    Article  Google Scholar 

  19. Fahland M, Vogt T, Meyer B, et al. Deposition of functional coatings on polyethylene terephthalate films by magnetron-plasma-enhanced chemical vapour deposition. Thin Solid Films, 2009, 517: 3043–3047

    Article  Google Scholar 

  20. Haas KH, Amberg-Schwab S, Rose K, et al. Functionalized coatings based on inorganic–organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films. Surf Coatings Tech, 1999, 111: 72–79

    Article  Google Scholar 

  21. Langereis E, Creatore M, Heil SBS, et al. Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers. Appl Phys Lett, 2006, 89: 081915

    Article  Google Scholar 

  22. Li L, Gao P, Baumgarten M, et al. High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film. Adv Mater, 2013, 25: 3419–3425

    Article  Google Scholar 

  23. Chen X, Zhang S, Wu K, et al. Improving the charge injection in organic transistors by covalently linked graphene oxide/metal electrodes. Adv Electron Mater, 2016, 2: 1500409

    Article  Google Scholar 

  24. Yang X, Li Q, Hu G, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci China Mater, 2016, 59: 182–190

    Article  Google Scholar 

  25. Cheng SM, Ren T, Ying PL, et al. Enhanced growth of crystallineamorphous core-shell silicon nanowires by catalytic thermal CVD using in situ generated tin catalyst. Sci China Chem, 2012, 55: 2573–2579

    Article  Google Scholar 

  26. Qi GJ, Zhang CR, Hu HF, et al. Preparation of three-dimensional silica fiber reinforced silicon nitride composites using perhydropolysilazane as precursor. Mater Lett, 2005, 59: 3256–3258

    Article  Google Scholar 

  27. Bauer F, Decker U, Dierdorf A, et al. Preparation of moisture curable polysilazane coatings. Prog Org Coatings, 2005, 53: 183–190

    Article  Google Scholar 

  28. Iwamoto Y, Sato K, Kato T, et al. A hydrogen-permselective amorphous silica membrane derived from polysilazane. J Eur Ceramic Soc, 2005, 25: 257–264

    Article  Google Scholar 

  29. Kozuka H, Fujita M, Tamoto S. Polysilazane as the source of silica: the formation of dense silica coatings at room temperature and the new route to organic–inorganic hybrids. J Sol-Gel Sci Technol, 2008, 48: 148–155

    Article  Google Scholar 

  30. Kubo T, Tadaoka E, Kozuka H. Preparation of hot water-resistant silica thin films from polysilazane solution at room temperature. J Sol-Gel Sci Tech, 2004, 31: 257–261

    Article  Google Scholar 

  31. Kubo T, Tadaoka E, Kozuka H. Formation of silica coating films from spin-on polysilazane at room temperature and their stability in hot water. J Mater Res, 2004, 19: 635–642

    Article  Google Scholar 

  32. Funayama O, Kato T, Tashiro Y, et al. Synthesis of a polyborosilazane and its conversion into inorganic compounds. J Am Ceramic Soc, 1993, 76: 717–723

    Article  Google Scholar 

  33. Guo S, Wang Z, Xu Z, et al. Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors. Chin Chem Lett, 2017, 28: 2143–2146

    Article  Google Scholar 

  34. Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys, 1958, 28: 373–383

    Article  Google Scholar 

  35. Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer, 2008, 49: 3187–3204

    Article  Google Scholar 

  36. Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glassforming liquids. J Am Chem Soc, 1955, 77: 3701–3707

    Article  Google Scholar 

  37. Prager L, Dierdorf A, Liebe H, et al. Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: access to flexible, transparent barrier coatings. Chem Eur J, 2007, 13: 8522–8529

    Article  Google Scholar 

  38. Nakajima K, Uchiyama H, Kitano T, Kozuka H. Conversion of solution-derived perhydropolysilazane thin films into silica in basic humid atmosphere at room temperature. J Am Ceram Soc, 2013, 96: 2806–2816

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (21573277, 51633006 and 51503221), the National Key Research and Development Program (2016YFA0200700), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDBSSWSLH031), and the Natural Sciences Foundation of Jiangsu Province (BK20150368).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqiang Li  (李立强), Zongbo Zhang  (张宗波), Feifei Xing  (邢菲菲) or Wenping Hu  (胡文平).

Additional information

Zhongwu Wang is a master student in Chemistry Department, College of Science, Shanghai University, China, under the supervision of Prof. Liqiang Li and Prof. Feifei Xing. His current research interests focus on high performance organic transistor and sensors.

Liqiang Li is a professor in Advanced Nano-materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China. His research interests include low dimensional molecular materials (organic semiconductor, conjugated polymer, and nanocarbon) and multifunctional electronic devices (transistors, sensors, memories, etc.).

Electronic supplementary material

40843_2017_9216_MOESM0_ESM.pdf

Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guo, S., Liang, Q. et al. Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter. Sci. China Mater. 61, 1237–1242 (2018). https://doi.org/10.1007/s40843-017-9216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9216-2

Navigation