Science China Materials

, Volume 61, Issue 7, pp 939–947 | Cite as

A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide

  • Xuya Xiong (熊旭亚)
  • Zhao Cai (蔡钊)
  • Daojin Zhou (周道金)
  • Guoxin Zhang (张国新)
  • Qian Zhang (张倩)
  • Yin Jia (贾茵)
  • Xinxuan Duan (段欣旋)
  • Qixian Xie (谢启贤)
  • Shibin Lai (赖仕斌)
  • Tianhui Xie (谢添慧)
  • Yaping Li (李亚平)
  • Xiaoming Sun (孙晓明)
  • Xue Duan (段雪)


Exploring efficient and cost-effective electrocatalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non-precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH nanoarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive electrode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm−2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be easily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance.


oxygen evolution reaction layered double hydroxide oxygen vacancy electrocatalysis 



探索低成本高效率的析氧电极对于工业电解水技术的发展至关重要. 尽管镍铁水滑石已被公认为是一种高效析氧的非贵金属催化剂, 但其本征活性还有待进一步提高. 本研究通过将氧空位缺陷引入镍铁水滑石, 设计出一种低成本高效率的析氧电极. 通过精确电子结构调控, 暴露更多活性位点, 提高电极导电性, 富缺陷镍铁水滑石电极展现出1.40 V (vs. RHE)的低起峰电位. 同时, 它仅需200 mV过电势就能达到10 mA cm−2的电流密度, 这相比未经处理的镍铁水滑石降低了48 mV. 我们进一步通过密度泛函理论计算发现, 氧空位缺陷的引入使Fe的价态降低, 带隙减小, 使得催化过程中电子更容易被激发到导带中, 从而降低反应过电势并使析氧活性增强.



This work was supported by the National Natural Science Foundation of China, National Key Research and Development Project (2016YFC0801302, 2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University, and the Fundamental Research Funds for the Central Universities, and the longterm subsidy mechanism from the Ministry of Finance and the Ministry of Education of China.

Supplementary material

40843_2017_9214_MOESM1_ESM.pdf (3.7 mb)
A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide


  1. 1.
    Luo J, Im JH, Mayer MT, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345: 1593–1596CrossRefGoogle Scholar
  2. 2.
    Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev, 2010, 110: 6446–6473CrossRefGoogle Scholar
  3. 3.
    Khan SUM, Al-Shahry M, Ingler WB. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243–2245CrossRefGoogle Scholar
  4. 4.
    Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321: 1072–1075CrossRefGoogle Scholar
  5. 5.
    McCrory CCL, Jung S, Peters JC, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc, 2013, 135: 16977–16987CrossRefGoogle Scholar
  6. 6.
    Fang YH, Liu ZP. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J Am Chem Soc, 2010, 132: 18214–18222CrossRefGoogle Scholar
  7. 7.
    Lee Y, Suntivich J, May KJ, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett, 2012, 3: 399–404CrossRefGoogle Scholar
  8. 8.
    Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal, 2012, 2: 1765–1772CrossRefGoogle Scholar
  9. 9.
    Lettenmeier P, Wang L, Golla-Schindler U, et al. Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed, 2016, 55: 742–746CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Jia X, Waterhouse GIN, et al. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv Energy Mater, 2016, 6: 1501974CrossRefGoogle Scholar
  11. 11.
    Cao R, Lee JS, Liu M, et al. Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater, 2012, 2: 816–829CrossRefGoogle Scholar
  12. 12.
    Prabu M, Ketpang K, Shanmugam S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries. Nanoscale, 2014, 6: 3173–3181CrossRefGoogle Scholar
  13. 13.
    Cui X, Ren P, Deng D, et al. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci, 2016, 9: 123–129CrossRefGoogle Scholar
  14. 14.
    Liang H, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15: 1421–1427CrossRefGoogle Scholar
  15. 15.
    Kargar A, Yavuz S, Kim TK, et al. Solution-processed CoFe2O4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction. ACS Appl Mater Interfaces, 2015, 7: 17851–17856CrossRefGoogle Scholar
  16. 16.
    Chen Z, Zhao H, Zhang J, et al. IrNi nanoparticle-decorated flower-shaped NiCo2O4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction. Sci China Mater, 2017, 60: 119–130CrossRefGoogle Scholar
  17. 17.
    Zhang F, Shi Y, Xue T, et al. In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Sci China Mater, 2017, 60: 324–334CrossRefGoogle Scholar
  18. 18.
    Guo S, Yang Y, Liu N, et al. One-step synthesis of cobalt, nitrogencodoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions. Sci Bull, 2016, 61: 68–77CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Jia X, Chen G, et al. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J Am Chem Soc, 2016, 138: 6517–6524CrossRefGoogle Scholar
  20. 20.
    Louie MW, Bell AT. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc, 2013, 135: 12329–12337CrossRefGoogle Scholar
  21. 21.
    Görlin M, Chernev P, Ferreira de Araújo J, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J Am Chem Soc, 2016, 138: 5603–5614CrossRefGoogle Scholar
  22. 22.
    Li P, Xie Q, Zheng L, et al. Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Res, 2017, 10: 2988–2997CrossRefGoogle Scholar
  23. 23.
    Wang Q, Shang L, Shi R, et al. NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv Energy Mater, 2017, 7: 1700467CrossRefGoogle Scholar
  24. 24.
    Liu R, Wang Y, Liu D, et al. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv Mater, 2017, 29: 1701546CrossRefGoogle Scholar
  25. 25.
    Wang Y, Zhang Y, Liu Z, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew Chem Int Ed, 2017, 56: 5867–5871CrossRefGoogle Scholar
  26. 26.
    Fan G, Li F, Evans DG, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev, 2014, 43: 7040–7066CrossRefGoogle Scholar
  27. 27.
    Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev, 2012, 112: 4124–4155CrossRefGoogle Scholar
  28. 28.
    Liu Z, Ma R, Osada M, et al. Synthesis, anion exchange, and delamination of Co−Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc, 2006, 128: 4872–4880CrossRefGoogle Scholar
  29. 29.
    Ma W, Ma R, Wang C, et al. A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano, 2015, 9: 1977–1984CrossRefGoogle Scholar
  30. 30.
    Hunter BM, Hieringer W, Winkler JR, et al. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ Sci, 2016, 9: 1734–1743CrossRefGoogle Scholar
  31. 31.
    Wang Z, Zeng S, Liu W, et al. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl Mater Interfaces, 2017, 9: 1488–1495CrossRefGoogle Scholar
  32. 32.
    Yu X, Zhang M, Yuan W, et al. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J Mater Chem A, 2015, 3: 6921–6928CrossRefGoogle Scholar
  33. 33.
    Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun, 2014, 5: 4477CrossRefGoogle Scholar
  34. 34.
    Gong M, Li Y, Wang H, et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc, 2013, 135: 8452–8455CrossRefGoogle Scholar
  35. 35.
    Luo M, Cai Z, Wang C, et al. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res, 2017, 10: 1732–1739CrossRefGoogle Scholar
  36. 36.
    Jia Y, Zhang L, Gao G, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater, 2017, 29: 1700017CrossRefGoogle Scholar
  37. 37.
    Sun Y, Gao S, Lei F, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev, 2015, 44: 623–636CrossRefGoogle Scholar
  38. 38.
    Zuo F, Wang L, Wu T, et al. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc, 2010, 132: 11856–11857CrossRefGoogle Scholar
  39. 39.
    Bao J, Zhang X, Fan B, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed, 2015, 54: 7399–7404CrossRefGoogle Scholar
  40. 40.
    Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed, 2016, 55: 5277–5281CrossRefGoogle Scholar
  41. 41.
    Liao P, Keith JA, Carter EA. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J Am Chem Soc, 2012, 134: 13296–13309CrossRefGoogle Scholar
  42. 42.
    Friebel D, Louie MW, Bajdich M, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc, 2015, 137: 1305–1313CrossRefGoogle Scholar
  43. 43.
    Chen J, Selloni A. First principles study of cobalt (hydr)oxides under electrochemical conditions. J Phys Chem C, 2013, 117: 20002–20006CrossRefGoogle Scholar
  44. 44.
    Dong Y, Zhang P, Kou Y, et al. A first-principles study of oxygen formation over NiFe-layered double hydroxides surface. Catal Lett, 2015, 145: 1541–1548CrossRefGoogle Scholar
  45. 45.
    Tao L, Lin CY, Dou S, et al. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy, 2017, 41: 417–425CrossRefGoogle Scholar
  46. 46.
    Xiao Z, Wang Y, Huang YC, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci, 2017, 10: 2563–2569CrossRefGoogle Scholar
  47. 47.
    Wang Y, Zhou T, Jiang K, et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater, 2014, 4: 1400696CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuya Xiong (熊旭亚)
    • 1
  • Zhao Cai (蔡钊)
    • 1
    • 2
  • Daojin Zhou (周道金)
    • 1
  • Guoxin Zhang (张国新)
    • 3
  • Qian Zhang (张倩)
    • 1
  • Yin Jia (贾茵)
    • 1
    • 4
  • Xinxuan Duan (段欣旋)
    • 1
  • Qixian Xie (谢启贤)
    • 1
  • Shibin Lai (赖仕斌)
    • 1
  • Tianhui Xie (谢添慧)
    • 1
  • Yaping Li (李亚平)
    • 1
  • Xiaoming Sun (孙晓明)
    • 1
    • 4
  • Xue Duan (段雪)
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Chemistry and Energy Sciences InstituteYale UniversityWest HavenUSA
  3. 3.College of Electrical Engineering and AutomationShandong University of Science and TechnologyTsingtaoChina
  4. 4.College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations