Science China Materials

, Volume 61, Issue 7, pp 1007–1011 | Cite as

Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates

  • Qi Yu (于琦)Email author
  • Rui Lin (林锐)
  • Liyun Jiang (姜立运)
  • Jiawei Wan (万家炜)
  • Chen Chen (陈晨)Email author



本论文以水热法在透明导电石墨烯柔性衬底(GPET)上生长氧化锌(ZnO)纳米管阵列, 发现其纳米管形成机理为选择性地沿(001)面生长, ZnO/GPET异质结具有较好的整流特性. 光催化测试表明, ZnO/GPET复合结构可提高光催化性能, 并具有良好的循环性. 此方法可在柔性衬底上稳定生长ZnO纳米管, 并可应用于相关光电器件及光催化领域中.



Qi Yu is grateful to Professor Yadong Li for his kind hospitality and supervision during her visit to his laboratory. This work was supported by the National Natural Science Foundation of China (51502166, 51781220355) and Shaanxi Province Department of Education Fund (15JK1156).


  1. 1.
    Law M, Greene LE, Johnson JC, et al. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4: 455–459CrossRefGoogle Scholar
  2. 2.
    Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Kang Z, Yan X, et al. ZnO nanostructures in enzyme biosensors. Sci China Mater, 2015, 58: 60–76CrossRefGoogle Scholar
  4. 4.
    Si H, Kang Z, Liao Q, et al. Design and tailoring of patterned ZnO nanostructures for energy conversion applications. Sci China Mater, 2017, 60: 793–810CrossRefGoogle Scholar
  5. 5.
    Qi J, Zhang H, Lu S, et al. High performance indium-doped ZnO gas sensor. J Nanomaterials, 2015, 2015: 1–6CrossRefGoogle Scholar
  6. 6.
    Zhang L, Bai S, Su C, et al. A high-reliability Kevlar Fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Adv Funct Mater, 2015, 25: 5794–5798CrossRefGoogle Scholar
  7. 7.
    Liao Q, Zhang Z, Zhang X, et al. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res, 2014, 7: 917–928CrossRefGoogle Scholar
  8. 8.
    Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414CrossRefGoogle Scholar
  9. 9.
    Li LB, Wu WQ, Rao HS, et al. Hierarchical ZnO nanorod-onnanosheet arrays electrodes for efficient CdSe quantum dot-sensitized solar cells. Sci China Mater, 2016, 59: 807–816CrossRefGoogle Scholar
  10. 10.
    Xu J, Chen Z, Zapien JA, et al. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv Mater, 2014, 26: 5337–5367CrossRefGoogle Scholar
  11. 11.
    Elias J, Tena-Zaera R, Wang GY, et al. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem Mater, 2008, 20: 6633–6637CrossRefGoogle Scholar
  12. 12.
    Qi X, She G, Liu Y, et al. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties. Chem Commun, 2012, 48: 242–244CrossRefGoogle Scholar
  13. 13.
    Park HK, Lee KY, Seo JS, et al. Charge-generating mode control in high-performance transparent flexible piezoelectric nanogenerators. Adv Funct Mater, 2011, 21: 1187–1193CrossRefGoogle Scholar
  14. 14.
    Xi Y, Song J, Xu S, et al. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J Mater Chem, 2009, 19: 9260–9264CrossRefGoogle Scholar
  15. 15.
    Chen S, Lou Z, Chen D, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Sci China Mater, 2016, 59: 173–181CrossRefGoogle Scholar
  16. 16.
    Sun Y, Fuge GM, Fox NA, et al. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv Mater, 2010, 17: 2477–2481CrossRefGoogle Scholar
  17. 17.
    Geng B, Liu X, Wei X, et al. Large-scale synthesis of single-crystalline ZnO nanotubes based on polymer-inducement. Mater Res Bull, 2006, 41: 1979–1983CrossRefGoogle Scholar
  18. 18.
    Yang J, Lin Y, Meng Y, et al. A two-step route to synthesize highly oriented ZnO nanotube arrays. Ceramics Int, 2012, 38: 4555–4559CrossRefGoogle Scholar
  19. 19.
    Hou X, Li F, He G, et al. A facile and green strategy for large-scale synthesis of silica nanotubes using ZnO nanorods as templates. Ceramics Int, 2014, 40: 5811–5815CrossRefGoogle Scholar
  20. 20.
    Dai ZR, Pan ZW, Wang ZL. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater, 2003, 13: 9–24CrossRefGoogle Scholar
  21. 21.
    Yu H, Zhang Z, Han M, et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J Am Chem Soc, 2005, 127: 2378–2379CrossRefGoogle Scholar
  22. 22.
    Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3: 270–274CrossRefGoogle Scholar
  23. 23.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191CrossRefGoogle Scholar
  24. 24.
    Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater, 2011, 10: 424–428CrossRefGoogle Scholar
  25. 25.
    Vickery JL, Patil AJ, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater, 2009, 21: 2180–2184CrossRefGoogle Scholar
  26. 26.
    Straumal BB, Protasova SG, Mazilkin AA, et al. Ferromagnetic behaviour of Fe-doped ZnO nanograined films. Beilstein J Nanotechnol, 2013, 4: 361–369CrossRefGoogle Scholar
  27. 27.
    Kim D, Shimpi P, Gao PX. Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation. Nano Res, 2009, 2: 966–974CrossRefGoogle Scholar
  28. 28.
    Cao B, Cai W. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J Phys Chem C, 2008, 112: 680–685CrossRefGoogle Scholar
  29. 29.
    Sun Y, Riley DJ, Ashfold MNR. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J Phys Chem B, 2006, 110: 15186–15192CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qi Yu (于琦)
    • 1
    • 2
    Email author
  • Rui Lin (林锐)
    • 2
  • Liyun Jiang (姜立运)
    • 3
  • Jiawei Wan (万家炜)
    • 2
  • Chen Chen (陈晨)
    • 2
    Email author
  1. 1.School of Materials Science and Engineering, Institute of Graphene at Shaanxi Key Laboratory of CatalysisShaanxi University of TechnologyHanzhongChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.School of Physics and Telecommunication EngineeringShaanxi University of TechnologyHanzhongChina

Personalised recommendations