Science China Materials

, Volume 61, Issue 3, pp 303–352 | Cite as

Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects

  • Lin Zhang (张麟)
  • Wenya Du (杜文雅)
  • Amit Nautiyal
  • Zhen Liu (柳祯)
  • Xinyu Zhang (张新宇)


Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mechanical stability, light weight, low cost and ease in material processing. Compared with bulk CPs, nanostructured CPs possess higher electrical conductivity, larger surface area, superior electrochemical activity, which make them suitable for various applications. Hybridization of CPs with other nanomaterials has obtained promising functional nanocomposites and achieved improved performance in different areas, such as energy storage, sensors, energy harvesting and protection applications. In this review, recent progress on nanostructured CPs and their composites is summarized from research all over the world in more than 400 references, especially from the last three years. The relevant synthesizing experiences are outlined and abundant application examples are illustrated. The approaches of production of nanostructured CPs are discussed and the efficacy and benefits of newest trends for the preparation of multifunctional nanomaterials/nanocomposites are presented. Mechanism of their electrical conductivity and the ways to tailor their properties are investigated. The remaining challenges in developing better CPs based nanomaterials are also elaborated.


conducting polymer synthesis composite nanostructures electronic devices 

纳米结构导电聚合物及其复合材料的研究进展: 制备, 应用和展望


导电聚合物既具有金属材料的导电性, 又具备高分子材料的特性, 因此近年来得到全世界的广泛研究和应用. 导电聚合物具有较宽和可调的电导率、 简捷的制备工艺、 可靠稳定的机械性能, 以及轻质低价的优点. 相比大尺度的导电聚合物, 具有纳米结构的导电聚合物呈现出较高的导电性, 较大的比表面积和较好的电化学活性. 纳米导电聚合物和其他纳米材料结合形成的功能性纳米复合材料实现了性能的改进, 在诸如电子电器、 能量储存、 能量收集、 传感器和电磁保护防腐等各个领域有着潜在和广泛的应用前景. 在这篇综述中, 作者总结了近几年来(涵盖四百多篇文献)纳米结构导电聚合物及其复合材料的研究进展, 讨论了纳米导电聚合物和复合材料的制备方法, 列举了不同的形貌和结构及其对应的导电机理和改性方法. 结合大量的实例, 介绍了纳米复合材料在各领域的应用和最新动态. 最后对纳米导电聚合物复合材料这一领域存在的挑战和亟待研究的热点问题进行了展望.



This work was partially supported by the National Institute of Food and Agriculture, USDA and AU-IGP award.


  1. 1.
    Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B, 2001, 105: 8475–8491CrossRefGoogle Scholar
  2. 2.
    Kumar D, Sharma RC. Advances in conductive polymers. Eur Polymer J, 1998, 34: 1053–1060CrossRefGoogle Scholar
  3. 3.
    Shirakawa H, Louis EJ, MacDiarmid AG, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun, 1977, 16: 578–580CrossRefGoogle Scholar
  4. 4.
    Chiang CK, Druy MA, Gau SC, et al. Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc, 1978, 100: 1013–1015CrossRefGoogle Scholar
  5. 5.
    MacDiarmid AG. “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed, 2001, 40: 2581–2590CrossRefGoogle Scholar
  6. 6.
    Ghosh S, Maiyalagan T, Basu RN. Nanostructured conducting polymers for energy applications: towards a sustainable platform. Nanoscale, 2016, 8: 6921–6947CrossRefGoogle Scholar
  7. 7.
    Yin Z, Zheng Q. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv Energy Mater, 2012, 2: 179–218CrossRefGoogle Scholar
  8. 8.
    Pan L, Qiu H, Dou C, et al. Conducting polymer nanostructures: template synthesis and applications in energy storage. IJMS, 2010, 11: 2636–2657CrossRefGoogle Scholar
  9. 9.
    Nguyen D, Yoon H. Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers, 2016, 8:118CrossRefGoogle Scholar
  10. 10.
    Inzelt G, Pineri M, Schultze JW, et al. Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta, 2000, 45: 2403–2421CrossRefGoogle Scholar
  11. 11.
    Mirabedini A, Foroughi J, Wallace GG. Developments in conducting polymer fibres: from established spinning methods toward advanced applications. RSC Adv, 2016, 6: 44687–44716CrossRefGoogle Scholar
  12. 12.
    Kaur G, Adhikari R, Cass P, et al. Electrically conductive polymers and composites for biomedical applications. RSC Adv, 2015, 5: 37553–37567CrossRefGoogle Scholar
  13. 13.
    Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polymer Sci, 2007, 32: 876–921CrossRefGoogle Scholar
  14. 14.
    Abdelhamid ME, O’Mullane AP, Snook GA. Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv, 2015, 5: 11611–11626CrossRefGoogle Scholar
  15. 15.
    Yang J, Liu Y, Liu S, et al. Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater Chem Front, 2017, 1: 251–268CrossRefGoogle Scholar
  16. 16.
    Baker CO, Huang X, Nelson W, et al. Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev, 2017, 46: 1510–1525CrossRefGoogle Scholar
  17. 17.
    Mastragostino M. Conducting polymers as electrode materials in supercapacitors. Solid State Ion, 2002, 148: 493–498CrossRefGoogle Scholar
  18. 18.
    Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources, 2011, 196: 1–12CrossRefGoogle Scholar
  19. 19.
    Bryan AM, Santino LM, Lu Y, et al. Conducting polymers for pseudocapacitive energy storage. Chem Mater, 2016, 28: 5989–5998CrossRefGoogle Scholar
  20. 20.
    Kim J, Lee J, You J, et al. Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater Horiz, 2016, 3: 517–535CrossRefGoogle Scholar
  21. 21.
    Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem Rev, 2010, 110: 6595–6663CrossRefGoogle Scholar
  22. 22.
    Wang J, Wang J, Kong Z, et al. Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv Mater, 2017, 29: 1703044CrossRefGoogle Scholar
  23. 23.
    Bai H, Shi G. Gas sensors based on conducting polymers. Sensors, 2007, 7: 267–307CrossRefGoogle Scholar
  24. 24.
    Hatchett DW, Josowicz M. Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev, 2008, 108: 746–769CrossRefGoogle Scholar
  25. 25.
    Liu Z, Zhang L, Poyraz S, et al. Conducting polymer-metal nanocomposites synthesis and their sensory applications. Curr Org Chem, 2013, 17: 2256–2267CrossRefGoogle Scholar
  26. 26.
    Zhang J, Liu X, Neri G, et al. Nanostructured materials for roomtemperature gas sensors. Adv Mater, 2016, 28: 795–831CrossRefGoogle Scholar
  27. 27.
    Gerard M. Application of conducting polymers to biosensors. Biosens Bioelectron, 2002, 17: 345–359CrossRefGoogle Scholar
  28. 28.
    Rajesh, Ahuja T, Kumar D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors Actuators B-Chem, 2009, 136: 275–286CrossRefGoogle Scholar
  29. 29.
    Ates M. A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng-C, 2013, 33: 1853–1859CrossRefGoogle Scholar
  30. 30.
    Han J, Wang M, Hu Y, et al. Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application. Prog Polymer Sci, 2017, 70: 52–91CrossRefGoogle Scholar
  31. 31.
    Lu X, Zhang W, Wang C, et al. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog Polymer Sci, 2011, 36: 671–712CrossRefGoogle Scholar
  32. 32.
    Zhan C, Yu G, Lu Y, et al. Conductive polymer nanocomposites: a critical review of modern advanced devices. J Mater Chem C, 2017, 5: 1569–1585CrossRefGoogle Scholar
  33. 33.
    Tran HD, Li D, Kaner RB. One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater, 2009, 21: 1487–1499CrossRefGoogle Scholar
  34. 34.
    Zhao X, Zhan X. Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev, 2011, 40: 3728–3743CrossRefGoogle Scholar
  35. 35.
    Wang Y, Jing X. Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol, 2005, 16: 344–351CrossRefGoogle Scholar
  36. 36.
    Deshpande PP, Jadhav NG, Gelling VJ, et al. Conducting polymers for corrosion protection: a review. J Coat Technol Res, 2014, 11: 473–494CrossRefGoogle Scholar
  37. 37.
    Muhammad Ekramul Mahmud HN, Huq AKO, Yahya R. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv, 2016, 6: 14778–14791CrossRefGoogle Scholar
  38. 38.
    Shahadat M, Khan MZ, Rupani PF, et al. A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Colloid Interface Sci, 2017, 249: 2–16CrossRefGoogle Scholar
  39. 39.
    Long YZ, Li MM, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polymer Sci, 2011, 36: 1415–1442CrossRefGoogle Scholar
  40. 40.
    Jackowska K, Biegunski AT, Tagowska M. Hard template synthesis of conducting polymers: a route to achieve nanostructures. J Solid State Electrochem, 2008, 12: 437–443CrossRefGoogle Scholar
  41. 41.
    Fu GD, Zhao JP, Sun YM, et al. Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules, 2007, 40: 2271–2275CrossRefGoogle Scholar
  42. 42.
    Martin CR, Van Dyke LS, Cai Z, et al. Template synthesis of organic microtubules. J Am Chem Soc, 1990, 112: 8976–8977CrossRefGoogle Scholar
  43. 43.
    Luo SC, Yu H, Wan ACA, et al. A general synthesis for PEDOTcoated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. Small, 2008, 4: 2051–2058CrossRefGoogle Scholar
  44. 44.
    Zhang Z, Sui J, Zhang L, et al. Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template. Adv Mater, 2005, 17: 2854–2857CrossRefGoogle Scholar
  45. 45.
    Martin CR. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266: 1961–1966CrossRefGoogle Scholar
  46. 46.
    Cai Z, Martin CR. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc, 1989, 111: 4138–4139CrossRefGoogle Scholar
  47. 47.
    Martin CR. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res, 1995, 28: 61–68CrossRefGoogle Scholar
  48. 48.
    Granström M, Inganäs O. Electrically conductive polymer fibres with mesoscopic diameters: 1. Studies of structure and electrical properties. Polymer, 1995, 36: 2867–2872Google Scholar
  49. 49.
    Cui S, Zheng Y, Liang J, et al. Conducting polymer PPy nanowirebased triboelectric nanogenerator and its application for selfpowered electrochemical cathodic protection. Chem Sci, 2016, 7: 6477–6483CrossRefGoogle Scholar
  50. 50.
    Cho SI, Lee SB. Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc Chem Res, 2008, 41: 699–707CrossRefGoogle Scholar
  51. 51.
    Duvail JL, Rétho P, Fernandez V, et al. Effects of the confined synthesis on conjugated polymer transport properties. J Phys Chem B, 2004, 108: 18552–18556CrossRefGoogle Scholar
  52. 52.
    Zhang X, Zhang J, Liu Z, et al. Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem Commun, 2004, 16: 1852–1853CrossRefGoogle Scholar
  53. 53.
    Zhang X, Zhang J, Song W, et al. Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B, 2006, 110: 1158–1165CrossRefGoogle Scholar
  54. 54.
    Jang J, Li XL, Oh JH. Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterials. Chem Commun, 2004, 7: 794–795CrossRefGoogle Scholar
  55. 55.
    Jang J, Yoon H. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem Commun, 2003, 6: 720–721CrossRefGoogle Scholar
  56. 56.
    Yoon H, Chang M, Jang J. Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Funct Mater, 2007, 17: 431–436CrossRefGoogle Scholar
  57. 57.
    Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Adv Mater, 2005, 17: 1616–1620CrossRefGoogle Scholar
  58. 58.
    Mao H, Liu X, Chao D, et al. Preparation of unique PEDOT nanorods with a couple of cuspate tips by reverse interfacial polymerization and their electrocatalytic application to detect nitrite. J Mater Chem, 2010, 20: 10277–10284CrossRefGoogle Scholar
  59. 59.
    Zhang X, Lee JS, Lee GS, et al. Chemical synthesis of PEDOT nanotubes. Macromolecules, 2006, 39: 470–472CrossRefGoogle Scholar
  60. 60.
    Liu Z, Zhang X, Poyraz S, et al. Oxidative template for conducting polymer nanoclips. J Am Chem Soc, 2010, 132: 13158–13159CrossRefGoogle Scholar
  61. 61.
    Li G, Li Y, Li Y, et al. Polyaniline nanorings and flat hollow capsules synthesized by in situ sacrificial oxidative templates. Macromolecules, 2011, 44: 9319–9323CrossRefGoogle Scholar
  62. 62.
    Tran HD, D’Arcy JM, Wang Y, et al. The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J Mater Chem, 2011, 21: 3534–3550CrossRefGoogle Scholar
  63. 63.
    Huang J, Kaner RB. A general chemical route to polyaniline nanofibers. J Am Chem Soc, 2004, 126: 851–855CrossRefGoogle Scholar
  64. 64.
    Zhang X, Chan-Yu-King R, Jose A, et al. Nanofibers of polyaniline synthesized by interfacial polymerization. Synth Met, 2004, 145: 23–29CrossRefGoogle Scholar
  65. 65.
    Zhang X, Kolla H, Wang X, et al. Fibrillar growth in polyaniline. Adv Funct Mater, 2006, 16: 1145–1152CrossRefGoogle Scholar
  66. 66.
    Su K, Nuraje N, Zhang L, et al. Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Adv Mater, 2007, 19: 669–672CrossRefGoogle Scholar
  67. 67.
    Nuraje N, Su K, Yang NL, et al. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano, 2008, 2: 502–506CrossRefGoogle Scholar
  68. 68.
    Zhang X, Goux WJ, Manohar SK. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc, 2004, 126: 4502–4503CrossRefGoogle Scholar
  69. 69.
    Zhang X, Manohar SK. Bulk synthesis of polypyrrole nanofibers by a seeding approach. J Am Chem Soc, 2004, 126: 12714–12715CrossRefGoogle Scholar
  70. 70.
    Zhang X, MacDiarmid AG, Manohar SK. Chemical synthesis of PEDOT nanofibers. Chem Commun, 2005, 12: 5328–5330CrossRefGoogle Scholar
  71. 71.
    Zhang X, Manohar SK. Narrow pore-diameter polypyrrole nanotubes. J Am Chem Soc, 2005, 127: 14156–14157CrossRefGoogle Scholar
  72. 72.
    Liu Z, Liu Y, Poyraz S, et al. Green-nano approach to nanostructured polypyrrole. Chem Commun, 2011, 47: 4421–4423CrossRefGoogle Scholar
  73. 73.
    Mijangos C, Hernández R, Martín J. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Prog Polymer Sci, 2016, 54-55: 148–182CrossRefGoogle Scholar
  74. 74.
    Sapountzi E, Braiek M, Chateaux JF, Jaffrezic-Renault N, Lagarde F. Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices. Sensors, 2017, 17: 1887CrossRefGoogle Scholar
  75. 75.
    Amariei N, Manea LR, Bertea AP, et al. Electrospinning polyaniline for sensors. IOP Conf Ser-Mater Sci Eng, 2017, 209: 012091CrossRefGoogle Scholar
  76. 76.
    Abd Razak SI, Wahab IF, Fadil F, et al. A review of electrospun conductive polyaniline based nanofiber composites and blends: processing features, applications, and future directions. Adv Mater Sci Eng, 2015, 2015: 1–19CrossRefGoogle Scholar
  77. 77.
    Zhang Y, Kim JJ, Chen D, et al. Electrospun polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases. Adv Funct Mater, 2014, 24: 4005–4014CrossRefGoogle Scholar
  78. 78.
    Pinto NJ, Johnson Jr. AT, MacDiarmid AG, et al. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett, 2003, 83: 4244–4246Google Scholar
  79. 79.
    Cárdenas JR, França MGO, Vasconcelos EA, et al. Growth of submicron fibres of pure polyaniline using the electrospinning technique. J Phys D-Appl Phys, 2007, 40: 1068–1071CrossRefGoogle Scholar
  80. 80.
    MacDiarmid AG, Jones Jr. WE, Norris ID, et al. Electrostaticallygenerated nanofibers of electronic polymers. Synth Met, 2001, 119: 27–30Google Scholar
  81. 81.
    Kang TS, Lee SW, Joo J, et al. Electrically conducting polypyrrole fibers spun by electrospinning. Synth Met, 2005, 153: 61–64CrossRefGoogle Scholar
  82. 82.
    Tian T, Deng J, Xie Z, et al. Polypyrrole hollow fiber for solid phase extraction. Analyst, 2012, 137: 1846–1852CrossRefGoogle Scholar
  83. 83.
    Wu J, Cho W, Martin DC, et al. Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano-and microscale fibers and tubes. Polymer, 2013, 54: 702–708CrossRefGoogle Scholar
  84. 84.
    Pillalamarri SK, Blum FD, Tokuhiro AT, et al. Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater, 2005, 17: 227–229CrossRefGoogle Scholar
  85. 85.
    Karim MR, Lee CJ, Lee MS. Synthesis of conducting polypyrrole by radiolysis polymerization method. Polym Adv Technol, 2007, 18: 916–920CrossRefGoogle Scholar
  86. 86.
    Lattach Y, Deniset-Besseau A, Guigner JM, et al. Radiation chemistry as an alternative way for the synthesis of PEDOT conducting polymers under “soft” conditions. Radiat Phys Chem, 2013, 82: 44–53CrossRefGoogle Scholar
  87. 87.
    Lattach Y, Coletta C, Ghosh S, et al. Radiation-induced synthesis of nanostructured conjugated polymers in aqueous solution: fundamental effect of oxidizing species. ChemPhysChem, 2014, 15: 208–218CrossRefGoogle Scholar
  88. 88.
    Yu X, Li Y, Kalantar-zadeh K. Synthesis and electrochemical properties of template-based polyaniline nanowires and templatefree nanofibril arrays: Two potential nanostructures for gas sensors. Sensors Actuators B-Chem, 2009, 136: 1–7CrossRefGoogle Scholar
  89. 89.
    Nam DH, Kim MJ, Lim SJ, et al. Single-step synthesis of polypyrrole nanowires by cathodic electropolymerization. J Mater Chem A, 2013, 1: 8061–8068CrossRefGoogle Scholar
  90. 90.
    Thapa PS, Yu DJ, Wicksted JP, et al. Directional growth of polypyrrole and polythiophene wires. Appl Phys Lett, 2009, 94: 033104CrossRefGoogle Scholar
  91. 91.
    Qin D, Xia Y, Whitesides GM. Soft lithography for micro-and nanoscale patterning. Nat Protoc, 2010, 5: 491–502CrossRefGoogle Scholar
  92. 92.
    Nie Z, Kumacheva E. Patterning surfaces with functional polymers. Nat Mater, 2008, 7: 277–290CrossRefGoogle Scholar
  93. 93.
    Geissler M, Xia Y. Patterning: principles and some new developments. Adv Mater, 2004, 16: 1249–1269CrossRefGoogle Scholar
  94. 94.
    Acikgoz C, Hempenius MA, Huskens J, et al. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur Polymer J, 2011, 47: 2033–2052CrossRefGoogle Scholar
  95. 95.
    Zhang F, Nyberg T, Inganäs O. Conducting polymer nanowires and nanodots made with soft lithography. Nano Lett, 2002, 2: 1373–1377CrossRefGoogle Scholar
  96. 96.
    Hu Z, Muls B, Gence L, et al. High-throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance. Nano Lett, 2007, 7: 3639–3644CrossRefGoogle Scholar
  97. 97.
    Behl M, Seekamp J, Zankovych S, et al. Towards plastic electronics: patterning semiconducting polymers by nanoimprint lithography. Adv Mater, 2002, 14: 588–591CrossRefGoogle Scholar
  98. 98.
    Huang C, Dong B, Lu N, et al. A strategy for patterning conducting polymers using nanoimprint lithography and isotropic plasma etching. Small, 2009, 5: 583–586CrossRefGoogle Scholar
  99. 99.
    Feng X, Yang G, Xu Q, et al. Self-assembly of polyaniline/au composites: from nanotubes to nanofibers. Macromol Rapid Commun, 2006, 27: 31–36CrossRefGoogle Scholar
  100. 100.
    Wang L, Liu N, Ma Z. Novel gold-decorated polyaniline derivatives as redox-active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B, 2015, 3: 2867–2872CrossRefGoogle Scholar
  101. 101.
    Williams PE, Jones ST, Walsh Z, et al. Synthesis of conducting polymer–metal nanoparticle hybrids exploiting RAFT polymerization. ACS Macro Lett, 2015, 4: 255–259CrossRefGoogle Scholar
  102. 102.
    Hnida KE, Socha RP, Sulka GD. Polypyrrole–silver composite nanowire arrays by cathodic co-deposition and their electrochemical properties. J Phys Chem C, 2013, 117: 130916100825004CrossRefGoogle Scholar
  103. 103.
    Hasan M, Ansari MO, Cho MH, et al. Electrical conductivity, optical property and ammonia sensing studies on HCl Doped Au@polyaniline nanocomposites. Electron Mater Lett, 2015, 11: 1–6CrossRefGoogle Scholar
  104. 104.
    Bogdanovic U, Pašti I, Ciric-Marjanovic G, et al. Interfacial synthesis of gold–polyaniline nanocomposite and its electrocatalytic application. ACS Appl Mater Interfaces, 2015, 7: 28393–28403CrossRefGoogle Scholar
  105. 105.
    Dutt S, Siril PF, Sharma V, et al. Goldcore–polyanilineshell composite nanowires as a substrate for surface enhanced Raman scattering and catalyst for dye reduction. New J Chem, 2015, 39: 902–908CrossRefGoogle Scholar
  106. 106.
    Rong Q, Han H, Feng F, et al. Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. Sci Rep, 2015, 5: 11440CrossRefGoogle Scholar
  107. 107.
    Liu Y, Liu Z, Lu N, et al. Facile synthesis of polypyrrole coated copper nanowires: a new concept to engineered core–shell structures. Chem Commun, 2012, 48: 2621–2623CrossRefGoogle Scholar
  108. 108.
    Liu Z, Poyraz S, Liu Y, et al. Seeding approach to noble metal decorated conducting polymer nanofiber network. Nanoscale, 2012, 4: 106–109CrossRefGoogle Scholar
  109. 109.
    Poyraz S, Liu Z, Liu Y, et al. One-step synthesis and characterization of poly(o-toluidine) nanofiber/metal nanoparticle composite networks as non-enzymatic glucose sensors. Sensors Actuators B-Chem, 2014, 201: 65–74CrossRefGoogle Scholar
  110. 110.
    Poyraz S, Cerkez I, Huang TS, et al. One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents. ACS Appl Mater Interfaces, 2014, 6: 20025–20034CrossRefGoogle Scholar
  111. 111.
    Liu Y, Lu N, Poyraz S, et al. One-pot formation of multifunctional Pt-conducting polymer intercalated nanostructures. Nanoscale, 2013, 5: 3872–3879CrossRefGoogle Scholar
  112. 112.
    Liu Z, Liu Y, Zhang L, et al. Controlled synthesis of transition metal/conducting polymer nanocomposites. Nanotechnology, 2012, 23: 335603CrossRefGoogle Scholar
  113. 113.
    Xu J, Li X, Liu J, et al. Solution route to inorganic nanobeltconducting organic polymer core-shell nanocomposites. J Polym Sci A Polym Chem, 2005, 43: 2892–2900CrossRefGoogle Scholar
  114. 114.
    Cai G, Tu J, Zhou D, et al. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J Phys Chem C, 2013, 117: 15967–15975CrossRefGoogle Scholar
  115. 115.
    Pan J, Li P, Cai L, et al. All-solution processed double-decked PEDOT:PSS/V2O5 nanowires as buffer layer of high performance polymer photovoltaic cells. Sol Energ Mater Sol Cells, 2016, 144: 616–622CrossRefGoogle Scholar
  116. 116.
    Zhang J, Han J, Wang M, et al. Fe3O4/PANI/MnO2 core–shell hybrids as advanced adsorbents for heavy metal ions. J Mater Chem A, 2017, 5: 4058–4066CrossRefGoogle Scholar
  117. 117.
    Gülce H, Eskizeybek V, Haspulat B, et al. Preparation of a new polyaniline/CdO nanocomposite and investigation of its photocatalytic activity: comparative study under uv light and natural sunlight irradiation. Ind Eng Chem Res, 2013, 52: 10924–10934CrossRefGoogle Scholar
  118. 118.
    Wen T, Fan Q, Tan X, et al. A core–shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(vi ) and humic acid removal. Polym Chem, 2016, 7: 785–794CrossRefGoogle Scholar
  119. 119.
    Yin Z, Fan W, Ding Y, et al. Shell structure control of PPymodified CuO composite nanoleaves for lithium batteries with improved cyclic performance. ACS Sustain Chem Eng, 2015, 3: 507?517CrossRefGoogle Scholar
  120. 120.
    Ngaboyamahina E, Debiemme-Chouvy C, Pailleret A, et al. Electrodeposition of polypyrrole in TiO2 nanotube arrays by pulsed-light and pulsed-potential methods. J Phys Chem C, 2014, 118: 26341–26350CrossRefGoogle Scholar
  121. 121.
    Su PG, Peng YT. Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sensors Actuators B-Chem, 2014, 193: 637–643CrossRefGoogle Scholar
  122. 122.
    Xia C, Chen W, Wang X, et al. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications. Adv Energy Mater, 2015, 5: 1401805CrossRefGoogle Scholar
  123. 123.
    Tang PY, Han LJ, Genç A, et al. Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy, 2016, 22: 189–201CrossRefGoogle Scholar
  124. 124.
    Gao MR, Xu YF, Jiang J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42: 2986–3017CrossRefGoogle Scholar
  125. 125.
    Sajedi-Moghaddam A, Saievar-Iranizad E, Pumera M. Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nanoscale, 2017, 9: 8052–8065CrossRefGoogle Scholar
  126. 126.
    Wang X, Xing W, Feng X, et al. MoS2/polymer nanocomposites: preparation, properties, and applications. Polymer Rev, 2017, 57: 440–466CrossRefGoogle Scholar
  127. 127.
    Zhu J, Sun W, Yang D, et al. Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small, 2015, 11: 4123–4129CrossRefGoogle Scholar
  128. 128.
    Wang G, Peng J, Zhang L, et al. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithiumion batteries. J Mater Chem A, 2015, 3: 3659–3666CrossRefGoogle Scholar
  129. 129.
    Sha C, Lu B, Mao H, et al. 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors. Carbon, 2016, 99: 26–34CrossRefGoogle Scholar
  130. 130.
    Gopalakrishnan K, Sultan S, Govindaraj A, et al. Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2. Nano Energ, 2015, 12: 52–58CrossRefGoogle Scholar
  131. 131.
    Zhang X, Lai Z, Tan C, et al. Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew Chem Int Ed, 2016, 55: 8816–8838CrossRefGoogle Scholar
  132. 132.
    Huang YJ, Fan MS, Li CT, et al. MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells. Electrochim Acta, 2016, 211: 794–803CrossRefGoogle Scholar
  133. 133.
    Ju H, Kim J. Chemically exfoliated SnSe nanosheets and their SnSe/Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano, 2016, 10: 5730–5739CrossRefGoogle Scholar
  134. 134.
    Zhao X, Mai Y, Luo H, et al. Nano-MoS2/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode. Appl Surf Sci, 2014, 288: 736–741CrossRefGoogle Scholar
  135. 135.
    Jiang F, Xiong J, Zhou W, et al. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A, 2016, 4: 5265–5273CrossRefGoogle Scholar
  136. 136.
    Bahuguna A, Kumar S, Sharma V, et al. Nanocomposite of MoS2-RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustain Chem Eng, 2017, 5: 8551–8567CrossRefGoogle Scholar
  137. 137.
    Zhang Y, He T, Liu G, et al. One-pot mass preparation of MoS2 /C aerogels for high-performance supercapacitors and lithiumion batteries. Nanoscale, 2017, 9: 10059–10066CrossRefGoogle Scholar
  138. 138.
    Lei J, Lu X, Nie G, et al. One-pot synthesis of algae-like MoS2/PPy nanocomposite: a synergistic catalyst with superior peroxidaselike catalytic activity for H2O2 Detection. Part Part Syst Charact, 2015, 32: 886–892CrossRefGoogle Scholar
  139. 139.
    Liu Z, Zhang L, Wang R, et al. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Sci Rep, 2016, 6: 22503CrossRefGoogle Scholar
  140. 140.
    Poyraz S, Zhang L, Schroder A, et al. Ultrafast microwave welding/ reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces, 2015, 7: 22469–22477CrossRefGoogle Scholar
  141. 141.
    Zhou H, Han G, Chang Y, et al. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors. J Power Sources, 2015, 274: 229–236CrossRefGoogle Scholar
  142. 142.
    Wang J, Dai J, Yarlagadda T. Carbon nanotube-conductingpolymer composite nanowires. Langmuir, 2005, 21: 9–12CrossRefGoogle Scholar
  143. 143.
    Bavio MA, Acosta GG, Kessler T, et al. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline–carbon nanotubes. Energy, 2017, 130: 22–28CrossRefGoogle Scholar
  144. 144.
    He X, Liu G, Yan B, et al. Significant enhancement of electrochemical behaviour by incorporation of carboxyl group functionalized carbon nanotubes into polyaniline based supercapacitor. Eur Polymer J, 2016, 83: 53–59CrossRefGoogle Scholar
  145. 145.
    Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater, 2016, 28: 3646–3652CrossRefGoogle Scholar
  146. 146.
    Cong HP, Ren XC, Wang P, et al. Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energ Environ Sci, 2013, 6: 1185CrossRefGoogle Scholar
  147. 147.
    Choi H, Ahn KJ, Lee Y, et al. Free-standing, multilayered graphene/ polyaniline-glue/graphene nanostructures for flexible, solid-state electrochemical capacitor application. Adv Mater Interfaces, 2015, 2: 1500117CrossRefGoogle Scholar
  148. 148.
    Wang L, Wu T, Du S, et al. High performance supercapacitors based on ternary graphene/Au/polyaniline (PANI) hierarchical nanocomposites. RSC Adv, 2016, 6: 1004–1011CrossRefGoogle Scholar
  149. 149.
    Moyseowicz A, Sliwak A, Miniach E, et al. Polypyrrole/iron oxide/reduced graphene oxide ternary composite as a binderless electrode material with high cyclic stability for supercapacitors. Composites Part B-Eng, 2017, 109: 23–29CrossRefGoogle Scholar
  150. 150.
    Lee HU, Yin JL, Park SW, et al. Preparation and characterization of PEDOT:PSS wrapped carbon nanotubes/MnO2 composite electrodes for flexible supercapacitors. Synth Met, 2017, 228: 84–90CrossRefGoogle Scholar
  151. 151.
    Zhao J, Yue P, Tricard S, et al. Prussian blue (PB)/carbon nanopolyhedra/ polypyrrole composite as electrode: a high performance sensor to detect hydrazine with long linear range. Sensors Actuators B-Chem, 2017, 251: 706–712CrossRefGoogle Scholar
  152. 152.
    Salam MA, Obaid AY, El-Shishtawy RM, et al. Synthesis of na-nocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Adv, 2017, 7: 16878–16884CrossRefGoogle Scholar
  153. 153.
    Tan Y, Zhang Y, Kong L, et al. Nano-Au@PANI core-shell nanoparticles via in-situ polymerization as electrode for supercapacitor. J Alloys Compd, 2017, 722: 1–7CrossRefGoogle Scholar
  154. 154.
    Bhaumik M, Noubactep C, Gupta VK, et al. Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem Eng J, 2015, 271: 135–146CrossRefGoogle Scholar
  155. 155.
    Chen T, Liu B. Enhanced dielectric properties of poly(vinylidene fluoride) composite filled with polyaniline-iron core-shell nanocomposites. Mater Lett, 2018, 210: 165–168CrossRefGoogle Scholar
  156. 156.
    Bogdanovic U, Vodnik V, Mitric M, et al. Nanomaterial with high antimicrobial efficacy?copper/polyaniline nanocomposite. ACS Appl Mater Interfaces, 2015, 7: 1955–1966CrossRefGoogle Scholar
  157. 157.
    Wang AL, Xu H, Feng JX, et al. Design of Pd/PANI/Pd sandwichstructured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J Am Chem Soc, 2013, 135: 10703–10709CrossRefGoogle Scholar
  158. 158.
    Xia Y, Liu N, Sun L, et al. Networked Pd(core)@polyaniline(shell) composite: highly electro-catalytic ability and unique selectivity. Appl Surf Sci, 2018, 428: 809–814CrossRefGoogle Scholar
  159. 159.
    Wang K, Stenner C, Weissmüller J. A nanoporous gold-polypyrrole hybrid nanomaterial for actuation. Sensors Actuators BChem, 2017, 248: 622–629CrossRefGoogle Scholar
  160. 160.
    He W, Li G, Zhang S, et al. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating. ACS Nano, 2015, 9: 4244–4251CrossRefGoogle Scholar
  161. 161.
    Singh A, Salmi Z, Jha P, et al. One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air–water interface by photopolymerization. RSC Adv, 2013, 3: 13329–13336CrossRefGoogle Scholar
  162. 162.
    Zhang RC, Sun D, Zhang R, et al. Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Sci Rep, 2017, 7: 46682CrossRefGoogle Scholar
  163. 163.
    Cheng T, Zhang YZ, Yi JP, et al. Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT: PSS/Ag grid electrodes. J Mater Chem A, 2016, 4: 13754–13763CrossRefGoogle Scholar
  164. 164.
    Saravanan R, Sacari E, Gracia F, et al. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liquids, 2016, 221: 1029–1033CrossRefGoogle Scholar
  165. 165.
    Ghanbari K, Babaei Z. Fabrication and characterization of nonenzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem, 2016, 498: 37–46CrossRefGoogle Scholar
  166. 166.
    Yu Z, Li H, Zhang X, et al. Facile synthesis of NiCo2O4@ polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens Bioelectron, 2016, 75: 161–165CrossRefGoogle Scholar
  167. 167.
    Khilari S, Pandit S, Varanasi JL, et al. Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell. ACS Appl Mater Interfaces, 2015, 7: 20657–20666CrossRefGoogle Scholar
  168. 168.
    Ullah H, Tahir AA, Mallick TK. Polypyrrole/TiO2 composites for the application of photocatalysis. Sensors Actuators B-Chem, 2017, 241: 1161–1169CrossRefGoogle Scholar
  169. 169.
    Li Y, Ban H, Yang M. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sensors Actuators B-Chem, 2016, 224: 449–457CrossRefGoogle Scholar
  170. 170.
    Marimuthu T, Mohamad S, Alias Y. Needle-like polypyrrole–NiO composite for non-enzymatic detection of glucose. Synth Met, 2015, 207: 35–41CrossRefGoogle Scholar
  171. 171.
    Zhou C, Zhang Y, Li Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett, 2013, 13: 2078–2085CrossRefGoogle Scholar
  172. 172.
    Zhong XB, Wang HY, Yang ZZ, et al. Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J Power Sources, 2015, 296: 298–304CrossRefGoogle Scholar
  173. 173.
    Liu LL, Wang XJ, Zhu YS, et al. Polypyrrole-coated LiV3O8-nanocomposites with good electrochemical performance as anode material for aqueous rechargeable lithium batteries. J Power Sources, 2013, 224: 290–294CrossRefGoogle Scholar
  174. 174.
    Guo CX, Sun K, Ouyang J, et al. Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem Mater, 2015, 27: 5813–5819CrossRefGoogle Scholar
  175. 175.
    Zheng M, Huo J, Tu Y, et al. An in situ polymerized PEDOT/ Fe3O4 composite as a Pt-free counter electrode for highly efficient dye sensitized solar cells. RSC Adv, 2016, 6: 1637–1643CrossRefGoogle Scholar
  176. 176.
    Ko IH, Kim SJ, Lim J, et al. Effect of PEDOT:PSS coating on manganese oxide nanowires for lithium ion battery anodes. Electrochim Acta, 2016, 187: 340–347CrossRefGoogle Scholar
  177. 177.
    Yang H, Xu H, Li M, et al. Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl Mater Interfaces, 2016, 8: 1774–1779CrossRefGoogle Scholar
  178. 178.
    Simotwo SK, DelRe C, Kalra V. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers. ACS Appl Mater Interfaces, 2016, 8: 21261–21269CrossRefGoogle Scholar
  179. 179.
    Wang H, Yi S, Pu X, et al. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits. ACS Appl Mater Interfaces, 2015, 7: 9589–9597CrossRefGoogle Scholar
  180. 180.
    Wen L, Li K, Liu J, et al. Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. RSC Adv, 2017, 7: 7688–7693CrossRefGoogle Scholar
  181. 181.
    Parveen N, Mahato N, Ansari MO, et al. Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@ graphene nanocomposite synthesized at elevated temperature. Composites Part B-Eng, 2016, 87: 281–290CrossRefGoogle Scholar
  182. 182.
    Tang W, Peng L, Yuan C, et al. Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth Met, 2015, 202: 140–146CrossRefGoogle Scholar
  183. 183.
    Liang L, Chen G, Guo CY. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/ single-walled carbon nanotube composites. Composites Sci Tech, 2016, 129: 130–136CrossRefGoogle Scholar
  184. 184.
    Cai Z, Xiong H, Zhu Z, et al. Electrochemical synthesis of graphene/ polypyrrole nanotube composites for multifunctional applications. Synth Met, 2017, 227: 100–105CrossRefGoogle Scholar
  185. 185.
    Lee Y, Choi H, Kim MS, et al. Nanoparticle-mediated physical exfoliation of aqueous-phase graphene for fabrication of threedimensionally structured hybrid electrodes. Sci Rep, 2016, 6: 19761CrossRefGoogle Scholar
  186. 186.
    Biswas S, Drzal LT. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater, 2010, 22: 5667–5671CrossRefGoogle Scholar
  187. 187.
    Yang C, Zhang L, Hu N, et al. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. J Power Sources, 2016, 302: 39–45CrossRefGoogle Scholar
  188. 188.
    Benchirouf A, Palaniyappan S, Ramalingame R, et al. Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects. Sensors Actuators B-Chem, 2016, 224: 344–350CrossRefGoogle Scholar
  189. 189.
    Ji T, Tan L, Bai J, et al. Synergistic dispersible graphene: sulfonated carbon nanotubes integrated with PEDOT for large-scale transparent conductive electrodes. Carbon, 2016, 98: 15–23CrossRefGoogle Scholar
  190. 190.
    Sidhu NK, Rastogi AC. Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synth Met, 2016, 219: 1–10CrossRefGoogle Scholar
  191. 191.
    Taylor IM, Robbins EM, Catt KA, et al. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron, 2017, 89: 400–410CrossRefGoogle Scholar
  192. 192.
    Xu J, Ding J, Zhou X, et al. Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@ Au@carbon nanotube with ultrafast axial electron transport. J Power Sources, 2017, 340: 302–308CrossRefGoogle Scholar
  193. 193.
    Hu TH, Yin ZS, Guo JW, et al. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction. J Power Sources, 2014, 272: 661–671CrossRefGoogle Scholar
  194. 194.
    Yang L, Tang Y, Yan D, et al. Polyaniline-reduced graphene oxide hybrid nanosheets with nearly vertical orientation anchoring palladium nanoparticles for highly active and stable electrocatalysis. ACS Appl Mater Interfaces, 2016, 8: 169–176CrossRefGoogle Scholar
  195. 195.
    Dhibar S, Das CK. Silver nanoparticles decorated polyaniline/ multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind Eng Chem Res, 2014, 53: 3495–3508CrossRefGoogle Scholar
  196. 196.
    Liu C, Xu Y, Wu L, et al. Fabrication of core–multishell MWCNT/Fe3O4/PANI/Au hybrid nanotubes with high-performance electromagnetic absorption. J Mater Chem A, 2015, 3: 10566–10572CrossRefGoogle Scholar
  197. 197.
    Nguyen VH, Shim JJ. Ultrasmall SnO2 nanoparticle-intercalated graphene@polyaniline composites as an active electrode material for supercapacitors in different electrolytes. Synth Met, 2015, 207: 110–115CrossRefGoogle Scholar
  198. 198.
    Luo J, Xu Y, Yao W, et al. Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Composites Sci Tech, 2015, 117: 315–321CrossRefGoogle Scholar
  199. 199.
    Mu B, Wang A. One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. J Mater Chem A, 2015, 3: 281–289CrossRefGoogle Scholar
  200. 200.
    Mini V, Archana K, Raghu S, et al. Nanostructured multifunctional core/shell ternary composite of polyaniline-chitosancobalt oxide: Preparation, electrical and optical properties. Mater Chem Phys, 2016, 170: 90–98CrossRefGoogle Scholar
  201. 201.
    Wang W, Hao Q, Lei W, et al. Ternary nitrogen-doped graphene/ nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. J Power Sources, 2014, 269: 250–259CrossRefGoogle Scholar
  202. 202.
    Moon S, Jung YH, Kim DK. Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium–sulfur batteries. J Power Sources, 2015, 294: 386–392CrossRefGoogle Scholar
  203. 203.
    Xie Y, Xia C, Du H, et al. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sources, 2015, 286: 561–570CrossRefGoogle Scholar
  204. 204.
    Jiang L, Lu X, Xie C, et al. Flexible, free-standing TiO2–graphene–polypyrrole composite films as electrodes for supercapacitors. J Phys Chem C, 2015, 119: 3903–3910CrossRefGoogle Scholar
  205. 205.
    de Oliveira AHP, de Oliveira HP. Carbon nanotube/polypyrrole nanofibers core–shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J Power Sources, 2014, 268: 45–49CrossRefGoogle Scholar
  206. 206.
    Huang J, Yang Z, Feng Z, et al. A novel ZnO@Ag@polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell. Sci Rep, 2016, 6: 24471CrossRefGoogle Scholar
  207. 207.
    De A, Datta J, Haldar I, et al. Catalytic intervention of MoO3 toward ethanol oxidation on ptpd nanoparticles decorated MoO3–polypyrrole composite support. ACS Appl Mater Interfaces, 2016, 8: 28574–28584CrossRefGoogle Scholar
  208. 208.
    Zeng Y, Han Y, Zhao Y, et al. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energ Mater, 2015, 5: 1402176CrossRefGoogle Scholar
  209. 209.
    Cho S, Kim M, Jang J. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for highcapacity supercapacitor. ACS Appl Mater Interfaces, 2015, 7: 10213–10227CrossRefGoogle Scholar
  210. 210.
    Jiang W, Yu D, Zhang Q, et al. Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv Funct Mater, 2015, 25: 1063–1073CrossRefGoogle Scholar
  211. 211.
    Lin X, Nishio K, Nakamura R, et al. Encapsulation of shewanella in the redox phospholipid polymer hydrogel for microbial fuel cell fabrication. Trans Mat Res Soc Jpn, 2012, 37: 529–532CrossRefGoogle Scholar
  212. 212.
    Kurra N, Hota MK, Alshareef HN. Conducting polymer microsupercapacitors for flexible energy storage and AC line-filtering. Nano Energ, 2015, 13: 500–508CrossRefGoogle Scholar
  213. 213.
    Chmiola J, Largeot C, Taberna PL, et al. Monolithic carbidederived carbon films for micro-supercapacitors. Science, 2010, 328: 480–483CrossRefGoogle Scholar
  214. 214.
    Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometresized supercapacitors based on onion-like carbon. Nat Nanotech, 2010, 5: 651–654CrossRefGoogle Scholar
  215. 215.
    Kaempgen M, Chan CK, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett, 2009, 9: 1872–1876CrossRefGoogle Scholar
  216. 216.
    El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun, 2013, 4: 1475CrossRefGoogle Scholar
  217. 217.
    Eftekhari A, Li L, Yang Y. Polyaniline supercapacitors. J Power Sources, 2017, 347: 86–107CrossRefGoogle Scholar
  218. 218.
    Woo SW, Dokko K, Nakano H, et al. Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors. J Power Sources, 2009, 190: 596–600CrossRefGoogle Scholar
  219. 219.
    Eftekhari A, Fan Z. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater Chem Front, 2017, 1: 1001–1027CrossRefGoogle Scholar
  220. 220.
    Salunkhe RR, Tang J, Kobayashi N, et al. Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci, 2016, 7: 5704–5713CrossRefGoogle Scholar
  221. 221.
    Hu C, He S, Jiang S, et al. Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Adv, 2015, 5: 14441–14447CrossRefGoogle Scholar
  222. 222.
    Anothumakkool B, Soni R, Bhange SN, et al. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energ Environ Sci, 2015, 8: 1339–1347CrossRefGoogle Scholar
  223. 223.
    Wang Z, Tammela P, Huo J, et al. Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors. J Mater Chem A, 2016, 4: 1714–1722CrossRefGoogle Scholar
  224. 224.
    Das TK, Prusty S. Review on conducting polymers and their applications. Polymer-Plastics Tech Eng, 2012, 51: 1487–1500CrossRefGoogle Scholar
  225. 225.
    Jiang HR, Lu Z, Wu MC, et al. Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energ, 2016, 23: 97–104CrossRefGoogle Scholar
  226. 226.
    Nie A, Gan LY, Cheng Y, et al. Twin boundary-assisted lithium ion transport. Nano Lett, 2015, 15: 610–615CrossRefGoogle Scholar
  227. 227.
    Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21: 4593–4607CrossRefGoogle Scholar
  228. 228.
    Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 135: 1167–1176CrossRefGoogle Scholar
  229. 229.
    Tan P, Jiang HR, Zhu XB, et al. Advances and challenges in lithium-air batteries. Appl Energ, 2017, 204: 780–806CrossRefGoogle Scholar
  230. 230.
    Sengodu P, Deshmukh AD. Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv, 2015, 5: 42109–42130CrossRefGoogle Scholar
  231. 231.
    Yang Y, Yu G, Cha JJ, et al. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano, 2011, 5: 9187–9193CrossRefGoogle Scholar
  232. 232.
    Chen H, Dong W, Ge J, et al. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep, 2013, 3: 1910CrossRefGoogle Scholar
  233. 233.
    Liu G, Xun S, Vukmirovic N, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater, 2011, 23: 4679–4683CrossRefGoogle Scholar
  234. 234.
    Wu H, Yu G, Pan L, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun, 2013, 4: 1943CrossRefGoogle Scholar
  235. 235.
    Bai S, Ma Y, Jiang X, et al. Greatly improved cyclability for Li-ion batteries with a PEDOT–PSS coated nanostructured Ge anode. Surfs Interfaces, 2017, 8: 214–218CrossRefGoogle Scholar
  236. 236.
    Chao D, Xia X, Liu J, et al. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater, 2014, 26: 5794–5800CrossRefGoogle Scholar
  237. 237.
    Wang S, Hu L, Hu Y, et al. Conductive polyaniline capped Fe2O3 composite anode for high rate lithium ion batteries. Mater Chem Phys, 2014, 146: 289–294CrossRefGoogle Scholar
  238. 238.
    Xu GL, Li Y, Ma T, et al. PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energ, 2015, 18: 253–264CrossRefGoogle Scholar
  239. 239.
    Seh ZW, Wang H, Hsu PC, et al. Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energ Environ Sci, 2014, 7:672CrossRefGoogle Scholar
  240. 240.
    Lawes S, Sun Q, Lushington A, et al. Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energ, 2017, 36: 313–321CrossRefGoogle Scholar
  241. 241.
    Dang ZM, Yuan JK, Yao SH, et al. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater, 2013, 25: 6334–6365CrossRefGoogle Scholar
  242. 242.
    Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev, 2016, 116: 4260–4317CrossRefGoogle Scholar
  243. 243.
    Chen Q, Shen Y, Zhang S, et al. Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res, 2015, 45: 433–458CrossRefGoogle Scholar
  244. 244.
    Zhang M, Zhang L, Zhu M, et al. Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. J Mater Chem A, 2016, 4: 4797–4807CrossRefGoogle Scholar
  245. 245.
    Shan X, Zhang L, Yang X, et al. Dielectric composites with a high and temperature-independent dielectric constant. J Adv Ceram, 2012, 1: 310–316CrossRefGoogle Scholar
  246. 246.
    Zhang L, Xu Z, Feng Y, et al. Synthesis, sintering and characterization of PNZST ceramics from high-energy ball milling process. Ceramics Int, 2008, 34: 709–713CrossRefGoogle Scholar
  247. 247.
    Jin L, Huo R, Guo R, et al. Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7Ca0.3 )TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces, 2016, 8: 31109–31119CrossRefGoogle Scholar
  248. 248.
    Jin L, Li F, Zhang S. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc, 2014, 97: 1-27CrossRefGoogle Scholar
  249. 249.
    Zhang L, Xu Z, Li Z, et al. Preparation and characterization of high Tc(1-x)BiScO3-xPbTiO3 ceramics from high energy ball milling process. J Electroceram, 2008, 21: 605–608CrossRefGoogle Scholar
  250. 250.
    Wu P, Zhang M, Wang H, et al. Effect of coupling agents on the dielectric properties and energy storage of Ba0.5 Sr0.5TiO3/P(VDFCTFE) nanocomposites. AIP Adv, 2017, 7: 075210CrossRefGoogle Scholar
  251. 251.
    Zhang L, Shan X, Bass P, et al. Process and microstructure to achieve ultra-high dielectric constant in ceramic-polymer composites. Sci Rep, 2016, 6: 35763CrossRefGoogle Scholar
  252. 252.
    Zhang L, Shan X, Wu P, et al. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Appl Phys A, 2012, 107: 597–602CrossRefGoogle Scholar
  253. 253.
    Samsur R, Rangari VK, Jeelani S, et al. Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties. J Appl Phys, 2013, 113: 214903–214903CrossRefGoogle Scholar
  254. 254.
    Zhang L, Shan X, Wu P, et al. Microstructure and dielectric properties of CCTO-P(VDF-TrFE) nanocomposites. Ferroelectrics, 2010, 405: 92–97CrossRefGoogle Scholar
  255. 255.
    Wang CC, Song JF, Bao HM, et al. Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater, 2008, 18: 1299–1306CrossRefGoogle Scholar
  256. 256.
    Shehzad K, Ul-Haq A, Ahmad S, et al. All-organic PANI–DBSA/ PVDF dielectric composites with unique electrical properties. J Mater Sci, 2013, 48: 3737–3744CrossRefGoogle Scholar
  257. 257.
    Singh VP, Ramani R, Singh AS, et al. Dielectric and conducting behavior of pyrene functionalized PANI/P(VDF-co-HFP) blend. J Appl Polym Sci, 2016, 133: 44077Google Scholar
  258. 258.
    Huang C, Zhang Q. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv Funct Mater, 2004, 14: 501–506CrossRefGoogle Scholar
  259. 259.
    Yuan JK, Dang ZM, Yao SH, et al. Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J Mater Chem, 2010, 20: 2441–2447CrossRefGoogle Scholar
  260. 260.
    Zhang Y, Huo P, Liu X, et al. High dielectric constant polyaniline/ sulfonated poly(aryl ether ketone) composite membranes with good thermal and mechanical properties. J Appl Polym Sci, 2013, 130: 1990–1995CrossRefGoogle Scholar
  261. 261.
    Zhang L, Liu Z, Lu X, et al. Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energ, 2016, 26: 550–557CrossRefGoogle Scholar
  262. 262.
    Yu S, Qin F, Wang G. Improving the dielectric properties of poly (vinylidene fluoride) composites by using poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods. J Mater Chem C, 2016, 4: 1504–1510CrossRefGoogle Scholar
  263. 263.
    Kim BG, Kim YS, Kim YH, et al. Nano-scale insulation effect of polypyrrole/polyimide core–shell nanoparticles for dielectric composites. Composites Sci Tech, 2016, 129: 153–159CrossRefGoogle Scholar
  264. 264.
    Zhang L, Wang W, Wang X, et al. Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Appl Phys Lett, 2013, 103: 232903CrossRefGoogle Scholar
  265. 265.
    Liao X, Ye W, Chen L, et al. Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Composites Part AAppl Sci Manufacturing, 2017, 101: 50–58CrossRefGoogle Scholar
  266. 266.
    Zhang L, Bass P, Cheng ZY. Revisiting the percolation phenomena in dielectric composites with conducting fillers. Appl Phys Lett, 2014, 105: 042905CrossRefGoogle Scholar
  267. 267.
    Zhang L, Wang X, Cheng ZY. A case study of conductor-dielectric 0–3 composites using Ni-P(VDF-CTFE) nanocomposites. J Adv Phys, 2015, 4: 362–369CrossRefGoogle Scholar
  268. 268.
    Zhang L, Bass P, Cheng ZY. Physical aspects of 0–3 dielectric composites. J Adv Dielect, 2015, 05: 1550012CrossRefGoogle Scholar
  269. 269.
    Xu W, Ding Y, Yu Y, et al. Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Mater Lett, 2017, 192: 25–28CrossRefGoogle Scholar
  270. 270.
    Zhang YY, Wang GL, Zhang J, et al. Preparation and properties of core-shell structured calcium copper titanate@polyaniline/silicone dielectric elastomer actuators. Polym Compos, 2017, 85Google Scholar
  271. 271.
    Huang X, Jiang P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater, 2015, 27: 546–554CrossRefGoogle Scholar
  272. 272.
    Himanshu AK, Bandyopadhayay SK, Bahuguna R, et al. Synthesis and dielectric studies of polyaniline?polyacrylamide conducting polymer composites. AIP Conference Proceedings, 2011, 1349: 204-205CrossRefGoogle Scholar
  273. 273.
    Zhang L, Bass P, Wang G, Tong Y, et al. Dielectric response and percolation behavior of Ni–P(VDF–TrFE) nanocomposites. J Adv Dielectr, 2017, 7: 1750015CrossRefGoogle Scholar
  274. 274.
    Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nat Mater, 2003, 2: 19–24CrossRefGoogle Scholar
  275. 275.
    Virji S, Huang J, Kaner RB, et al. Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett, 2004, 4: 491–496CrossRefGoogle Scholar
  276. 276.
    Fratoddi I, Venditti I, Cametti C, et al. Chemiresistive polyaniline-based gas sensors: A mini review. Sensors Actuators BChem, 2015, 220: 534–548CrossRefGoogle Scholar
  277. 277.
    Gong X, Wang Y, Kuang T. ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustain Chem Eng, 2017, 5: 11204–11214CrossRefGoogle Scholar
  278. 278.
    Patil UV, Ramgir NS, Karmakar N, et al. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl Surf Sci, 2015, 339: 69–74CrossRefGoogle Scholar
  279. 279.
    Shirsat MD, Bangar MA, Deshusses MA, et al. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl Phys Lett, 2009, 94: 083502CrossRefGoogle Scholar
  280. 280.
    Bai S, Sun C, Wan P, et al. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small, 2015, 11: 306–310CrossRefGoogle Scholar
  281. 281.
    Wang L, Huang H, Xiao S, et al. Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@ cross-linked PANI with p–n heterojunctions. ACS Appl Mater Interfaces, 2014, 6: 14131–14140CrossRefGoogle Scholar
  282. 282.
    Guo Y, Wang T, Chen F, et al. Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, 2016, 8: 12073–12080CrossRefGoogle Scholar
  283. 283.
    Eising M, Cava CE, Salvatierra RV, et al. Doping effect on selfassembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors Actuators B-Chem, 2017, 245: 25–33CrossRefGoogle Scholar
  284. 284.
    Abdulla S, Mathew TL, Pullithadathil B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B-Chem, 2015, 221: 1523–1534CrossRefGoogle Scholar
  285. 285.
    Wu Z, Chen X, Zhu S, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors Actuators B-Chem, 2013, 178: 485–493CrossRefGoogle Scholar
  286. 286.
    Gavgani JN, Hasani A, Nouri M, et al. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sensors Actuators B-Chem, 2016, 229: 239–248CrossRefGoogle Scholar
  287. 287.
    Yang X, Li L, Yan F. Polypyrrole/silver composite nanotubes for gas sensors. Sensors Actuators B-Chem, 2010, 145: 495–500CrossRefGoogle Scholar
  288. 288.
    Hong L, Li Y, Yang M. Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sensors Actuators BChem, 2010, 145: 25–31CrossRefGoogle Scholar
  289. 289.
    Nalage SR, Mane AT, Pawar RC, et al. Polypyrrole–NiO hybrid nanocomposite films: highly selective, sensitive, and reproducible NO2 sensors. Ionics, 2014, 20: 1607–1616CrossRefGoogle Scholar
  290. 290.
    Mane AT, Navale ST, Sen S, et al. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org Electron, 2015, 16: 195–204CrossRefGoogle Scholar
  291. 291.
    Xiang C, Jiang D, Zou Y, et al. Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles. Ceramics Int, 2015, 41: 6432–6438CrossRefGoogle Scholar
  292. 292.
    Park E, Kwon O, Park S, et al. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem, 2012, 22: 1521–1526CrossRefGoogle Scholar
  293. 293.
    Dehsari HS, Gavgani JN, Hasani A, et al. Copper(II) phthalocyanine supported on a three-dimensional nitrogen-doped graphene/ PEDOT-PSS nanocomposite as a highly selective and sensitive sensor for ammonia detection at room temperature. RSC Adv, 2015, 5: 79729–79737CrossRefGoogle Scholar
  294. 294.
    Arabloo F, Javadpour S, Memarzadeh R, et al. The interaction of carbon monoxide to Fe(III)(salen)-PEDOT:PSS composite as a gas sensor. Synth Met, 2015, 209: 192–199CrossRefGoogle Scholar
  295. 295.
    Zheng Y, Lee D, Koo HY, et al. Chemically modified graphene/ PEDOT:PSS nanocomposite films for hydrogen gas sensing. Carbon, 2015, 81: 54–62CrossRefGoogle Scholar
  296. 296.
    Timmer B, Olthuis W, Berg A. Ammonia sensors and their applications? a review. Sensors Actuators B-Chem, 2005, 107: 666–677CrossRefGoogle Scholar
  297. 297.
    Bandgar DK, Navale ST, Nalage SR, et al. Simple and low-temperature polyaniline-based flexible ammonia sensor: a step to-wards laboratory synthesis to economical device design. J Mater Chem C, 2015, 3: 9461–9468CrossRefGoogle Scholar
  298. 298.
    Kumar L, Rawal I, Kaur A, et al. Flexible room temperature ammonia sensor based on polyaniline. Sensors Actuators BChem, 2017, 240: 408–416CrossRefGoogle Scholar
  299. 299.
    Jun J, Oh J, Shin DH, et al. Wireless, room temperature volatile organic compound sensor based on polypyrrole nanoparticle immobilized ultrahigh frequency radio frequency identification tag. ACS Appl Mater Interfaces, 2016, 8: 33139–33147CrossRefGoogle Scholar
  300. 300.
    Sarfraz J, Tobjork D, Osterbacka R, et al. Low-cost hydrogen sulfide gas sensor on paper substrates: fabrication and demonstration. IEEE Sensors J, 2012, 12: 1973–1978CrossRefGoogle Scholar
  301. 301.
    Sarfraz J, Ihalainen P, Määttänen A, et al. Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite. Thin Solid Films, 2013, 534: 621–628CrossRefGoogle Scholar
  302. 302.
    Virji S, Fowler JD, Baker CO, et al. Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small, 2005, 1: 624–627CrossRefGoogle Scholar
  303. 303.
    Mousavi S, Kang K, Park J, et al. A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline–polyethylene oxide nanofibers directly written on flexible substrates. RSC Adv, 2016, 6: 104131–104138CrossRefGoogle Scholar
  304. 304.
    Lei W, Si W, Xu Y, et al. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta, 2014, 181: 707–722CrossRefGoogle Scholar
  305. 305.
    Turner APF. Biosensors: sense and sensibility. Chem Soc Rev, 2013, 42: 3184–3196CrossRefGoogle Scholar
  306. 306.
    Chen C, Xie Q, Yang D, et al. Recent advances in electrochemical glucose biosensors: a review. RSC Adv, 2013, 3: 4473–4491CrossRefGoogle Scholar
  307. 307.
    Sun F, Wu K, Hung HC, et al. Paper sensor coated with a poly (carboxybetaine)-multiple DOPA conjugate via dip-coating for biosensing in complex media. Anal Chem, 2017, 89: 10999–11004CrossRefGoogle Scholar
  308. 308.
    Shrivastava S, Jadon N, Jain R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC Trends Anal Chem, 2016, 82: 55–67CrossRefGoogle Scholar
  309. 309.
    Aydemir N, Malmström J, Travas-Sejdic J. Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys, 2016, 18: 8264–8277CrossRefGoogle Scholar
  310. 310.
    Mahmoudian MR, Alias Y, Basirun WJ, et al. Synthesis of polypyrrole coated silver nanostrip bundles and their application for detection of hydrogen peroxide. J Electrochem Soc, 2014, 161: H487–H492CrossRefGoogle Scholar
  311. 311.
    Nia PM, Meng WP, Alias Y. One-step electrodeposition of polypyrrole-copper nano particles for H2O2 detection. J Electrochem Soc, 2016, 163: B8–B14CrossRefGoogle Scholar
  312. 312.
    Qi C, Zheng J. Novel nonenzymatic hydrogen peroxide sensor based on Fe3O4/PPy/Ag nanocomposites. J Electroanal Chem, 2015, 747: 53–58CrossRefGoogle Scholar
  313. 313.
    Siao HW, Chen SM, Lin KC. Electrochemical study of PEDOTPSS-MDB-modified electrode and its electrocatalytic sensing of hydrogen peroxide. J Solid State Electrochem, 2011, 15: 1121–1128CrossRefGoogle Scholar
  314. 314.
    Zhai D, Liu B, Shi Y, et al. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano, 2013, 7: 3540–3546CrossRefGoogle Scholar
  315. 315.
    Xu M, Song Y, Ye Y, et al. A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sensors Actuators B-Chem, 2017, 252: 1187–1193CrossRefGoogle Scholar
  316. 316.
    Fang L, Liang B, Yang G, et al. A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for longterm invasive continuous monitoring. Biosens Bioelectron, 2017, 97: 196–202CrossRefGoogle Scholar
  317. 317.
    Zhuang X, Tian C, Luan F, et al. One-step electrochemical fabrication of a nickel oxide nanoparticle/polyaniline nanowire/ graphene oxide hybrid on a glassy carbon electrode for use as a non-enzymatic glucose biosensor. RSC Adv, 2016, 6: 92541–92546CrossRefGoogle Scholar
  318. 318.
    Zhybak M, Beni V, Vagin MY, et al. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens Bioelectron, 2016, 77: 505–511CrossRefGoogle Scholar
  319. 319.
    Bayram E, Akyilmaz E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sensors Actuators B-Chem, 2016, 233: 409–418CrossRefGoogle Scholar
  320. 320.
    Li J, Hu H, Li H, et al. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J Mater Sci, 2017, 52: 10455–10469CrossRefGoogle Scholar
  321. 321.
    Yang MH, Kim DS, Yoon JH, et al. Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide. Analyst, 2016, 141: 1319–1324CrossRefGoogle Scholar
  322. 322.
    Han J, Li L, Guo R. Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers. Macromolecules, 2010, 43: 10636–10644CrossRefGoogle Scholar
  323. 323.
    Yang L, Zhang Z, Nie G, et al. Fabrication of conducting polymer/ noble metal composite nanorings and their enhanced catalytic properties. J Mater Chem A, 2015, 3: 83–86CrossRefGoogle Scholar
  324. 324.
    Song W, Chi M, Gao M, et al. Self-assembly directed synthesis of Au nanorices induced by polyaniline and their enhanced peroxidase-like catalytic properties. J Mater Chem C, 2017, 5: 7465–7471CrossRefGoogle Scholar
  325. 325.
    Chi M, Nie G, Jiang Y, et al. Self-assembly fabrication of coaxial Te@poly(3,4-ethylenedioxythiophene) nanocables and their conversion to Pd@poly(3,4-ethylenedioxythiophene) nanocables with a high peroxidase-like activity. ACS Appl Mater Interfaces, 2016, 8: 1041–1049CrossRefGoogle Scholar
  326. 326.
    Yang Z, Ma F, Zhu Y, et al. A facile synthesis of CuFe2O4/Cu9S8/ PPy ternary nanotubes as peroxidase mimics for the sensitive colorimetric detection of H2O2 and dopamine. Dalton Trans, 2017, 46: 11171–11179CrossRefGoogle Scholar
  327. 327.
    Jiang Y, Gu Y, Nie G, et al. Synthesis of rGO/Cu8S5/PPy composite nanosheets with enhanced peroxidase-like activity for sensitive colorimetric detection of H2O2 and phenol. Part Part Syst Charact, 2017, 34: 1600233CrossRefGoogle Scholar
  328. 328.
    Miao Z, Wang P, Zhong AM, et al. Development of a glucose biosensor based on electrodeposited gold nanoparticles–polyvinylpyrrolidone–polyaniline nanocomposites. J Electroanal Chem, 2015, 756: 153–160CrossRefGoogle Scholar
  329. 329.
    Zheng W, Hu L, Lee LYS, et al. Copper nanoparticles/polyaniline/ graphene composite as a highly sensitive electrochemical glucose sensor. J Electroanal Chem, 2016, 781: 155–160CrossRefGoogle Scholar
  330. 330.
    Wei X, Panindre P, Zhang Q, et al. Increasing the detection sensitivity for DNA-morpholino hybridization in sub-nanomolar regime by enhancing the surface ion conductance of PEDOT:PSS membrane in a microchannel. ACS Sens, 2016, 1: 862–865CrossRefGoogle Scholar
  331. 331.
    Zhang Q, Khajo A, Sai T, et al. Intramolecular transport of charge carriers in trimeric aniline upon a three-step acid doping process. J Phys Chem A, 2012, 116: 7629–7635CrossRefGoogle Scholar
  332. 332.
    Qi Zhang, Majumdar HS, Kaisti M, et al. Surface functionalization of ion-sensitive floating-gate field-effect transistors with organic electronics. IEEE Trans Electron Devices, 2015, 62: 1291–1298CrossRefGoogle Scholar
  333. 333.
    Yu Y, Zhang Q, Chang CC, et al. Design of a molecular imprinting biosensor with multi-scale roughness for detection across a broad spectrum of biomolecules. Analyst, 2016, 141: 5607–5617CrossRefGoogle Scholar
  334. 334.
    Yu Y, Zhang Q, Buscaglia J, et al. Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting. Analyst, 2016, 141: 4424–4431CrossRefGoogle Scholar
  335. 335.
    Zhang Q, Prabhu A, San A, et al. A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosens Bioelectron, 2015, 72: 100–106CrossRefGoogle Scholar
  336. 336.
    Cheng Z, Zhang Q. Field-activated electroactive polymers. MRS Bull, 2011, 33: 183–187CrossRefGoogle Scholar
  337. 337.
    Bass PS, Zhang L, Cheng ZY. Time-dependence of the electromechanical bending actuation observed in ionic-electroactive polymers. J Adv Dielectr, 2017: 1720002Google Scholar
  338. 338.
    Jaaoh D, Putson C, Muensit N. Deformation on segment-structure of electrostrictive polyurethane/polyaniline blends. Polymer, 2015, 61: 123–130CrossRefGoogle Scholar
  339. 339.
    Molberg M, Crespy D, Rupper P, et al. High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv Funct Mater, 2010, 20: 3280–3291CrossRefGoogle Scholar
  340. 340.
    Jaaoh D, Putson C, Muensit N. Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline. Composites Sci Tech, 2016, 122: 97–103CrossRefGoogle Scholar
  341. 341.
    Putson C, Jaaoh D, Muensit N. Large electromechanical strain at low electric field of modified polyurethane composites for flexible actuators. Mater Lett, 2016, 172: 27–31CrossRefGoogle Scholar
  342. 342.
    Fan FR, Tian ZQ, Lin Wang Z. Flexible triboelectric generator. Nano Energy, 2012, 1: 328–334CrossRefGoogle Scholar
  343. 343.
    Zhu G, Chen J, Zhang T, et al. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun, 2014, 5: 3426CrossRefGoogle Scholar
  344. 344.
    Wang J, Wen Z, Zi Y, et al. Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv Funct Mater, 2016, 26: 3542–3548CrossRefGoogle Scholar
  345. 345.
    Wang J, Wen Z, Zi Y, et al. All-plastic-materials based selfcharging power system composed of triboelectric nanogenerators and supercapacitors. Adv Funct Mater, 2016, 26: 1070–1076CrossRefGoogle Scholar
  346. 346.
    Sultana A, Alam MM, Garain S, et al. An effective electrical throughput from PANI supplement ZnS nanorods and PDMSbased flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler. ACS Appl Mater Interfaces, 2015, 7: 19091–19097CrossRefGoogle Scholar
  347. 347.
    Chen ZG, Han G, Yang L, et al. Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci-Mater Int, 2012, 22: 535–549CrossRefGoogle Scholar
  348. 348.
    Liu W, Yan X, Chen G, et al. Recent advances in thermoelectric nanocomposites. Nano Energ, 2012, 1: 42–56CrossRefGoogle Scholar
  349. 349.
    Wang H, Yin L, Pu X, et al. Facile charge carrier adjustment for improving thermopower of doped polyaniline. Polymer, 2013, 54: 1136–1140CrossRefGoogle Scholar
  350. 350.
    See KC, Feser JP, Chen CE, et al. Water-processable polymer -nanocrystal hybrids for thermoelectrics. Nano Lett, 2010, 10: 4664–4667CrossRefGoogle Scholar
  351. 351.
    Coates NE, Yee SK, McCulloch B, et al. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv Mater, 2013, 25: 1629–1633CrossRefGoogle Scholar
  352. 352.
    Wang Y, Zhang SM, Deng Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/ tellurium nanorod hybrid films. J Mater Chem A, 2016, 4: 3554–3559CrossRefGoogle Scholar
  353. 353.
    Kim D, Kim Y, Choi K, et al. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano, 2010, 4: 513–523CrossRefGoogle Scholar
  354. 354.
    Yao Q, Chen L, Zhang W, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano, 2010, 4: 2445–2451CrossRefGoogle Scholar
  355. 355.
    Harima Y, Fukumoto S, Zhang L, et al. Thermoelectric performances of graphene/polyaniline composites prepared by one-step electrosynthesis. RSC Adv, 2015, 5: 86855–86860CrossRefGoogle Scholar
  356. 356.
    Wang L, Yao Q, Bi H, et al. Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solutionassistant dispersing method. J Mater Chem A, 2014, 2: 11107–11113CrossRefGoogle Scholar
  357. 357.
    Cho C, Stevens B, Hsu JH, et al. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv Mater, 2015, 27: 2996–3001CrossRefGoogle Scholar
  358. 358.
    Zhang Z, Chen G, Wang H, et al. Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires. J Mater Chem C, 2015, 3: 1649–1654CrossRefGoogle Scholar
  359. 359.
    Wang Y, Yang J, Wang L, et al. Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces, 2017, 9: 20124–20131CrossRefGoogle Scholar
  360. 360.
    Wang L, Yao Q, Shi W, et al. Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater Chem Front, 2017, 1: 741–748CrossRefGoogle Scholar
  361. 361.
    Wang L, Liu Y, Zhang Z, et al. Polymer composites-based thermoelectric materials and devices. Composites Part B-Eng, 2017, 122: 145–155CrossRefGoogle Scholar
  362. 362.
    Meng C, Liu C, Fan S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater, 2010, 22: 535–539CrossRefGoogle Scholar
  363. 363.
    Du Y, Shen SZ, Yang W, et al. Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synth Met, 2012, 161: 2688–2692CrossRefGoogle Scholar
  364. 364.
    Xiang J, Drzal LT. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer, 2012, 53: 4202–4210CrossRefGoogle Scholar
  365. 365.
    Ates M. A review on conducting polymer coatings for corrosion protection. J Adhes Sci Tech, 2016, 30: 1510–1536CrossRefGoogle Scholar
  366. 366.
    Hosseini MG, Sabouri M, Shahrabi T. Corrosion protection of mild steel by polypyrrole phosphate composite coating. Prog Org Coatings, 2007, 60: 178–185CrossRefGoogle Scholar
  367. 367.
    Mengoli G, Munari MT, Bianco P, et al. Anodic synthesis of polyaniline coatings onto Fe sheets. J Appl Polym Sci, 1981, 26: 4247–4257CrossRefGoogle Scholar
  368. 368.
    DeBerry DW. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J Electrochem Soc, 1985, 132: 1022–1026CrossRefGoogle Scholar
  369. 369.
    Ahmad N, MacDiarmid AG. Inhibition of corrosion of steels with the exploitation of conducting polymers. Synth Met, 1996, 78: 103–110CrossRefGoogle Scholar
  370. 370.
    Camalet JL, Lacroix JC, Nguyen TD, et al. Aniline electropolymerization on platinum and mild steel from neutral aqueous media. J Electroanal Chem, 2000, 485: 13–20CrossRefGoogle Scholar
  371. 371.
    Ferreira CA, Aeiyach S, Aaron JJ, et al. Electrosynthesis of strongly adherent polypyrrole coatings on iron and mild steel in aqueous media. Electrochim Acta, 1996, 41: 1801–1809CrossRefGoogle Scholar
  372. 372.
    Nautiyal A, Qiao M, Cook JE, et al. High performance polypyrrole coating for corrosion protection and biocidal applications. Appl Surf Sci, 2018, 427: 922–930CrossRefGoogle Scholar
  373. 373.
    Genies EM, Bidan G, Diaz AF. Spectroelectrochemical study of polypyrrole films. J Electroanal Chem Interfacial Electrochem, 1983, 149: 101–113CrossRefGoogle Scholar
  374. 374.
    Nguyen Thi Le H, Garcia B, Deslouis C, et al. Corrosion protection and conducting polymers: polypyrrole films on iron. Electrochim Acta, 2001, 46: 4259–4272CrossRefGoogle Scholar
  375. 375.
    Van Schaftinghen T, Deslouis C, Hubin A, et al. Influence of the surface pre-treatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films. Electrochim Acta, 2006, 51: 1695–1703CrossRefGoogle Scholar
  376. 376.
    Bandeira RM, van Drunen J, Tremiliosi-Filho G, et al. Polyaniline/ polyvinyl chloride blended coatings for the corrosion protection of carbon steel. Prog Org Coatings, 2017, 106: 50–59CrossRefGoogle Scholar
  377. 377.
    Hermas AA, Salam MA, Al-Juaid SS, et al. Electrosynthesis and protection role of polyaniline–polvinylalcohol composite on stainless steel. Prog Org Coatings, 2014, 77: 403–411CrossRefGoogle Scholar
  378. 378.
    Lenz DM, Delamar M, Ferreira CA. Application of polypyrrole/ TiO2 composite films as corrosion protection of mild steel. J Electroanal Chem, 2003, 540: 35–44CrossRefGoogle Scholar
  379. 379.
    Ates M, Topkaya E. Nanocomposite film formations of polyaniline via TiO2, Ag, and Zn, and their corrosion protection properties. Prog Org Coatings, 2015, 82: 33–40CrossRefGoogle Scholar
  380. 380.
    Radhakrishnan S, Siju CR, Mahanta D, et al. Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta, 2009, 54: 1249–1254CrossRefGoogle Scholar
  381. 381.
    Zubillaga O, Cano FJ, Azkarate I, et al. Corrosion performance of anodic films containing polyaniline and TiO2 nanoparticles on AA3105 aluminium alloy. Surf Coatings Tech, 2008, 202: 5936–5942CrossRefGoogle Scholar
  382. 382.
    Pagotto JF, Recio FJ, Motheo AJ, et al. Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surf Coatings Tech, 2016, 289: 23–28CrossRefGoogle Scholar
  383. 383.
    Bhandari H, Kumar SA, Dhawan SK. Conducting polymer nanocomposites for anticorrosive and antistatic applications. in: nanocomposites -new trends and developments. Rijeka: InTech 2012Google Scholar
  384. 384.
    Bai X, Tran TH, Yu D, et al. Novel conducting polymer based composite coatings for corrosion protection of zinc. Corrosion Sci, 2015, 95: 110–116CrossRefGoogle Scholar
  385. 385.
    Qiu G, Zhu A, Zhang C. Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range. RSC Adv, 2017, 7: 35330–35339CrossRefGoogle Scholar
  386. 386.
    Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M. Polyaniline/ graphene nanocomposite coatings on copper: electropolymerization, characterization, and evaluation of corrosion protection performance. Synth Met, 2016, 217: 220–230CrossRefGoogle Scholar
  387. 387.
    Miškovic-Stankovic V, Jevremovic I, Jung I, et al. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon, 2014, 75: 335–344CrossRefGoogle Scholar
  388. 388.
    Cai K, Zuo S, Luo S, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv, 2016, 6: 95965–95972CrossRefGoogle Scholar
  389. 389.
    Qiu C, Liu D, Jin K, et al. Electrochemical functionalization of 316 stainless steel with polyaniline-graphene oxide: Corrosion resistance study. Mater Chem Phys, 2017, 198: 90–98CrossRefGoogle Scholar
  390. 390.
    Marimuthu M, Veerapandian M, Ramasundaram S, et al. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability. Appl Surf Sci, 2014, 293: 124–131CrossRefGoogle Scholar
  391. 391.
    He P, Wang J, Lu F, et al. Synergistic effect of polyaniline grafted basalt plates for enhanced corrosion protective performance of epoxy coatings. Prog Org Coatings, 2017, 110: 1–9CrossRefGoogle Scholar
  392. 392.
    Li Y, Wang X. Intrinsically conducting polymers and their composites for anticorrosion and antistatic applications. in: Yang X (Ed.). Semiconducting Polymer Composites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. 269–298Google Scholar
  393. 393.
    Trivedi DC, Dhawan SK. Antistatic applications of conducting polyaniline. Polym Adv Technol, 1993, 4: 335–340CrossRefGoogle Scholar
  394. 394.
    Zheng A, Xu X, Xiao H, et al. Antistatic modification of polypropylene by incorporating Tween/modified Tween. Appl Surf Sci, 2012, 258: 8861–8866CrossRefGoogle Scholar
  395. 395.
    Wang Q, Wang Y, Meng Q, et al. Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending. RSC Adv, 2017, 7: 2796–2803CrossRefGoogle Scholar
  396. 396.
    Wang J, Bao L, Zhao H, et al. Preparation and characterization of permanently anti-static packaging composites composed of high impact polystyrene and ion-conductive polyamide elastomer. Composites Sci Tech, 2012, 72: 976–981CrossRefGoogle Scholar
  397. 397.
    Tsurumaki A, Bertasi F, Vezzù K, et al. Dielectric relaxations of polyether-based polyurethanes containing ionic liquids as antistatic agents. Phys Chem Chem Phys, 2016, 18: 2369–2378CrossRefGoogle Scholar
  398. 398.
    Wang H, Sun L, Fei G, et al. A facile approach to fabricate waterborne, nanosized polyaniline-graft-(sulfonated polyurethane) as environmental antistatic coating. J Appl Polym Sci, 2017, 134: 45412CrossRefGoogle Scholar
  399. 399.
    Zhang M, Zhang C, Du Z, et al. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Composites Sci Tech, 2017, 138: 1–7CrossRefGoogle Scholar
  400. 400.
    Wessling B. Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes. Adv Mater, 1994, 6: 226–228CrossRefGoogle Scholar
  401. 401.
    Soto-Oviedo MA, Araújo OA, Faez R, et al. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth Met, 2006, 156: 1249–1255CrossRefGoogle Scholar
  402. 402.
    Xu J, Xiao J, Zhang Z, et al. Modified polyaniline and its effects on the microstructure and antistatic properties of PP/PANI-APP/ CPP composites. J Appl Polym Sci, 2014, 131: 40732CrossRefGoogle Scholar
  403. 403.
    Shi X, Hu Y, Fu F, et al. Construction of PANI–cellulose composite fibers with good antistatic properties. J Mater Chem A, 2014, 2: 7669–7673CrossRefGoogle Scholar
  404. 404.
    Zhao Y, Ma J, Chen K, et al. One-pot preparation of graphenebased polyaniline conductive nanocomposites for anticorrosion coatings. NANO, 2017, 12: 1750056CrossRefGoogle Scholar
  405. 405.
    Wang J, Zhang C, Du Z, et al. Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Adv, 2016, 6: 31782–31789CrossRefGoogle Scholar
  406. 406.
    Kizildag N, Ucar N, Onen A, et al. Polyacrylonitrile/polyaniline composite nanofiber webs with electrostatic discharge properties. J Composite Mater, 2016, 50: 3981–3994CrossRefGoogle Scholar
  407. 407.
    Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353: 1137–1140CrossRefGoogle Scholar
  408. 408.
    Deng J, Wang Q, Zhou Y, et al. Facile design of a ZnO nanorod–Ni core–shell composite with dual peaks to tune its microwave absorption properties. RSC Adv, 2017, 7: 9294–9302CrossRefGoogle Scholar
  409. 409.
    Deng J, Li S, Zhou Y, et al. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J Colloid Interface Sci, 2018, 509: 406–413CrossRefGoogle Scholar
  410. 410.
    Zeng Z, Chen M, Jin H, et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with highperformance electromagnetic interference shielding. Carbon, 2016, 96: 768–777CrossRefGoogle Scholar
  411. 411.
    Saini P, Choudhary V, Singh BP, et al. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys, 2009, 113: 919–926CrossRefGoogle Scholar
  412. 412.
    Chen Z, Xu C, Ma C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater, 2013, 25: 1296–1300CrossRefGoogle Scholar
  413. 413.
    Kuang T, Chang L, Chen F, et al. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon, 2016, 105: 305–313CrossRefGoogle Scholar
  414. 414.
    Wu F, Sun M, Jiang W, et al. A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly (3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution. J Mater Chem C, 2016, 4: 82–88CrossRefGoogle Scholar
  415. 415.
    Fang F, Li YQ, Xiao HM, et al. Layer-structured silver nanowire/ polyaniline composite film as a high performance X-band EMI shielding material. J Mater Chem C, 2016, 4: 4193–4203CrossRefGoogle Scholar
  416. 416.
    Li H, Lu X, Yuan D, et al. Lightweight flexible carbon nanotube/ polyaniline films with outstanding EMI shielding properties. J Mater Chem C, 2017, 5: 8694–8698CrossRefGoogle Scholar
  417. 417.
    Joseph N, Varghese J, Sebastian MT. A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C, 2016, 4: 999–1008CrossRefGoogle Scholar
  418. 418.
    Mohan RR, Varma SJ, Faisal M, et al. Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Adv, 2015, 5: 5917–5923CrossRefGoogle Scholar
  419. 419.
    Zhang Y, Qiu M, Yu Y, et al. A novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performance. ACS Appl Mater Interfaces, 2017, 9: 809–818CrossRefGoogle Scholar
  420. 420.
    Lyu J, Zhao X, Hou X, et al. Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite. Composites Sci Tech, 2017, 149: 159–165CrossRefGoogle Scholar
  421. 421.
    Zhao H, Hou L, Bi S, et al. Enhanced X-band electromagneticinterference shielding performance of layer-structured fabricsupported polyaniline/cobalt–nickel coatings. ACS Appl Mater Interfaces, 2017, 9: 33059–33070CrossRefGoogle Scholar
  422. 422.
    Gahlout P, Choudhary V. 5-Sulfoisophthalic acid monolithium salt doped polypyrrole/multiwalled carbon nanotubes composites for EMI shielding application in X-band (8.2–12.4 GHz). J Appl Polym Sci, 2017, 134: 45370CrossRefGoogle Scholar
  423. 423.
    Babayan V, Kazantseva NE, Moucka R, et al. Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes. Cellulose, 2017, 24: 3445–3451CrossRefGoogle Scholar
  424. 424.
    Agnihotri N, Chakrabarti K, De A. Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly (3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv, 2015, 5: 43765–43771CrossRefGoogle Scholar
  425. 425.
    Wu Y, Wang Z, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces, 2017, 9: 9059–9069CrossRefGoogle Scholar
  426. 426.
    Li P, Du D, Guo L, et al. Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C, 2016, 4: 6525–6532CrossRefGoogle Scholar
  427. 427.
    Geetha S, Satheesh Kumar KK, Rao CRK, et al. EMI shielding: Methods and materials—A review. J Appl Polym Sci, 2009, 112: 2073–2086CrossRefGoogle Scholar
  428. 428.
    Bhattacharjee Y, Arief I, Bose S. Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. J Mater Chem C, 2017, 5: 7390–7403CrossRefGoogle Scholar
  429. 429.
    Zhao H, Hou L, Lu Y. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater Des, 2016, 95: 97–106CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lin Zhang (张麟)
    • 1
  • Wenya Du (杜文雅)
    • 1
  • Amit Nautiyal
    • 2
  • Zhen Liu (柳祯)
    • 3
  • Xinyu Zhang (张新宇)
    • 2
  1. 1.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric ResearchXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Chemical EngineeringAuburn UniversityAuburnUSA
  3. 3.Department of Physics & EngineeringFrostburg State UniversityFrostburgUSA

Personalised recommendations