Science China Materials

, Volume 61, Issue 6, pp 887–894 | Cite as

A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting

  • Kai-Hang Ye (叶凯航)
  • Zilong Wang (王子龙)
  • Haibo Li (黎海波)
  • Yufei Yuan (袁渝斐)
  • Yongchao Huang (黄勇潮)
  • Wenjie Mai (麦文杰)
Articles

Abstract

In this work, we demonstrate the CoOOH/(Ti, C)-Fe2O3 (CTCF) nanorods prepared by a facile approach as well as their implementation as photoanodes for photoelectrochemical (PEC) water splitting. The photocurrent density of CTCF photoanode is 1.85 mA cm−2 at +1.23 V vs. reversible hydrogen electrode (RHE), which is more than 20 times higher than that of pristine α-Fe2O3 photoanode (0.08 mA cm−2). The incident-photo-to-current conversion efficiency, applied bias photo-to-current efficiency and transfer efficiency of CTCF photoanode reaches 31.2% at 380 nm (+1.23 V vs. RHE), 0.11% (+1.11 V vs. RHE), 68.2% (+1.23 V vs. RHE) respectively, which are much higher than those of pristine α-Fe2O3 photoanode. Additionally, the longtime irradiation PEC water splitting of CTCF photoanode demonstrates its high stability at extreme voltage in NaOH (pH 14).

Keywords

photoelectrochemistry water splitting doping ferric oxide 

新型CoOOH/(Ti, C)-Fe2O3纳米棒光阳极制备及其光电解水性能研究

摘要

本论文利用一种温和的方法合成了CoOOH/(Ti, C)-Fe2O3(CTCF)纳米棒光阳极, 并对其光电解水性能进行了研究. 在可见光照和1.0 V偏压(相对可逆氢电极)条件下, CTCF光阳极产生的光电流密度为1.85 mA cm−2, 远高于传统的α-Fe2O3光阳极的光电流密度. 同时, 该电极在强碱性电解液中(pH 14)可以保持较长时间的稳定性.

Notes

Acknowledgements

This work was preliminarily supported by the National Natural Science Foundation of China (21706295, 51772135 and 21376104), the Natural Science Foundation of Guangdong Province (2017A030313055 and 2014A030306010) and Jinan University (11617326 and 88017418).

Supplementary material

40843_2017_9199_MOESM1_ESM.pdf (4.2 mb)
A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting

References

  1. 1.
    Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344CrossRefGoogle Scholar
  2. 2.
    Lu X, Xie S, Yang H, et al. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem Soc Rev, 2014, 43: 7581–7593CrossRefGoogle Scholar
  3. 3.
    Wang G, Yang Y, Ling Y, et al. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J Mater Chem A, 2016, 4: 2849–2855CrossRefGoogle Scholar
  4. 4.
    Moniz S, Shevlin S, Martin D, et al. Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy Environ Sci, 2015, 8: 731–759CrossRefGoogle Scholar
  5. 5.
    Wang G, Yang Y, Han D, et al. Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13: 23–39CrossRefGoogle Scholar
  6. 6.
    Xie S, Zhai T, Li W, et al. Hydrogen production from solar driven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2 nanowire arrays. Green Chem, 2013, 15: 2434–2440CrossRefGoogle Scholar
  7. 7.
    Xie S, Li M, Wei W, et al. Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy, 2014, 10: 313–321CrossRefGoogle Scholar
  8. 8.
    Mao Y, Yang H, Chen J, et al. Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy, 2014, 6: 10–18CrossRefGoogle Scholar
  9. 9.
    Wang G, Yang X, Qian F, et al. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett, 2010, 10: 1088–1092CrossRefGoogle Scholar
  10. 10.
    Li M, He X, Zeng Y, et al. Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chem Sci, 2015, 6: 6799–6805CrossRefGoogle Scholar
  11. 11.
    Ye K-, Chai Z, Gu J, et al. BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy, 2015, 18: 222–231CrossRefGoogle Scholar
  12. 12.
    Ye K-, Wang Z, Gu J, et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci, 2017, 10: 772–779CrossRefGoogle Scholar
  13. 13.
    Chen S, Zeng L, Tian H, et al. Enhanced lattice oxygen reactivity over Ni-modified WO3-based redox catalysts for chemical looping partial oxidation of methane. ACS Catal, 2017, 7: 3548–3559CrossRefGoogle Scholar
  14. 14.
    Zhang J, Zhang P, Wang T, et al. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy, 2015, 11: 189–195CrossRefGoogle Scholar
  15. 15.
    Li H, Zhao F, Zhang J, et al. A g-C3N4/WO3 photoanode with exceptional ability for photoelectrochemical water splitting. Mater Chem Front, 2017, 1: 338–342CrossRefGoogle Scholar
  16. 16.
    Li M, Yang Y, Ling Y, et al. Morphology and doping engineering of Sn-doped hematite nanowire photoanodes. Nano Lett, 2017, 17: 2490–2495CrossRefGoogle Scholar
  17. 17.
    Zandi O, Hamann T. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem, 2016, 8: 778–783CrossRefGoogle Scholar
  18. 18.
    Shen S, Lindley S, Chen X, et al. Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ Sci, 2016, 9: 2744–2775CrossRefGoogle Scholar
  19. 19.
    Kong B, Tang J, Selomulya C, et al. Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces. J Am Chem Soc, 2014, 136: 6822–6825CrossRefGoogle Scholar
  20. 20.
    Qiu W, Huang Y, Long B, et al. Enhanced photoelectrochemical oxygen evolution reaction ability of iron-derived hematite photoanode with titanium modification. Chem Eur J, 2015, 21: 19250–19256CrossRefGoogle Scholar
  21. 21.
    Kim J, Youn D, Kang K, et al. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem, 2016, 128: 11012–11016CrossRefGoogle Scholar
  22. 22.
    Gurudayal, Sabba D, Kumar M, et al. Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett, 2015, 15: 3833–3839CrossRefGoogle Scholar
  23. 23.
    Luo Z, Wang T, Zhang J, et al. Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide interlayer for effective charge collection. Angew Chem Int Ed, 2017, 56: 12878–12882CrossRefGoogle Scholar
  24. 24.
    Yuan Y, Gu J, Ye K-, et al. Combining bulk/surface engineering of hematite to synergistically improve its photoelectrochemical water splitting performance. ACS Appl Mater Interfaces, 2016, 8: 16071–16077CrossRefGoogle Scholar
  25. 25.
    Tang PY, Xie HB, Ros C, et al. Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy Environ Sci, 2017, 10: 2124–2136CrossRefGoogle Scholar
  26. 26.
    Shi X, Choi I, Zhang K, et al. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun, 2014, 5: 4775–4782CrossRefGoogle Scholar
  27. 27.
    Bajdich M, García-Mota M, Vojvodic A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc, 2013, 135: 13521–13530CrossRefGoogle Scholar
  28. 28.
    Fu Z, Jiang T, Liu Z, et al. Highly photoactive Ti-doped a-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim Acta, 2014, 129: 358–363CrossRefGoogle Scholar
  29. 29.
    Kim T, Choi K-. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343: 990–994CrossRefGoogle Scholar
  30. 30.
    Huang Y, Hu H, Wang S, et al. Low concentration nitric acid facilitate rapid electron–hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde. Appl Catal B-Environ, 2017, 218: 700–708CrossRefGoogle Scholar
  31. 31.
    Tao F, Zhao Y-, Zhang G-, et al. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun, 2007, 9: 1282–1287CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai-Hang Ye (叶凯航)
    • 1
    • 3
  • Zilong Wang (王子龙)
    • 1
  • Haibo Li (黎海波)
    • 3
  • Yufei Yuan (袁渝斐)
    • 1
  • Yongchao Huang (黄勇潮)
    • 2
  • Wenjie Mai (麦文杰)
    • 1
  1. 1.Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of PhysicsJinan UniversityGuangzhouChina
  2. 2.Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and EngineeringGuangzhou UniversityGuangzhouChina
  3. 3.Fine Chemical Industry Research Institute, School of Chemical Engineering and TechnologySun Yat-sen UniversityGuangzhouChina

Personalised recommendations