Advertisement

Science China Materials

, Volume 61, Issue 3, pp 424–428 | Cite as

Room-temperature sintered metal-organic framework nanocrystals: A new type of optical ceramics

  • Jia-Wen Ye (叶嘉文)
  • Xuehong Zhou (周学宏)
  • Yu Wang (王昱)
  • Rui-Kang Huang (黄瑞康)
  • Hao-Long Zhou (周浩龙)
  • Xiao-Ning Cheng (程小宁)
  • Yuguang Ma (马於光)
  • Jie-Peng Zhang (张杰鹏)
Letter

室温烧结的金属—有机框架纳米晶: 一种新型光学陶瓷

摘要

光学陶瓷是一种透明的特种陶瓷, 可兼备单晶的高稳定性和玻璃、 流体和其他非晶材料的大尺寸的优点, 是有潜力的激光增益介质. 因为对晶体尺寸和对称性有严格要求, 而且需要高温烧结过程, 只有少数无机非金属材料可用于制备光学陶瓷. 本文报道了一种由配位聚合物(或称金属—有机框架)组成的新型陶瓷. 通过简单地降低溶剂挥发速度, MAF-4(即SOD型二甲基咪唑锌, 也称ZIF-8)的纳米晶即可融合形成致密的陶瓷状块体, 甚至具有毫米级尺寸和高达84%可见光透过率. 该金属—有机光学陶瓷MOOC-1可以负载荧光染料sulforhodamine 640并保持其发光特性, 包括很高的量子产率63.6%和极低的放大自发辐射阈值31 μJ cm-2. 其他几种金属—有机框架的纳米晶也可以在类似条件下融合成陶瓷或光学陶瓷. 考虑到金属—有机框架的结构和功能多样性, 金属—有机陶瓷不但可用作光学器件, 还可能在吸附、 分离、 传感等相关领域展现潜力.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91622109, 21371181, and 21473260).

Supplementary material

40843_2017_9184_MOESM1_ESM.pdf (1 mb)
Room-temperature sintered metal-organic framework nanoparticles: A new type of optical ceramics

References

  1. 1.
    Ikesue A, Aung YL. Ceramic laser materials. Nat Photonics, 2008, 2: 721–727CrossRefGoogle Scholar
  2. 2.
    Messing GL, Stevenson AJ. Materials science: toward pore-free ceramics. Science, 2008, 322: 383–384CrossRefGoogle Scholar
  3. 3.
    Walter Koechner, Solid-State Laser Engineering. Springer, New York, NY: 2006 Vol. 1Google Scholar
  4. 4.
    Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc, 1995, 78: 1033–1040CrossRefGoogle Scholar
  5. 5.
    Lu J, Lu J, Murai T, et al. Nd3+:Y2O3 ceramic laser. Jpn J Appl Phys, 2001, 40: L1277–L1279Google Scholar
  6. 6.
    Ding Y, Chen YP, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J Am Chem Soc, 2017, 139: 9136–9139CrossRefGoogle Scholar
  7. 7.
    He H, Ma E, Cui Y, et al. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat Commun, 2016, 7: 11087CrossRefGoogle Scholar
  8. 8.
    He H, Ma E, Yu J, et al. Periodically aligned dye molecules integrated in a single MOF microcrystal exhibit single-mode linearly polarized lasing. Adv Opt Mater, 2017, 5: 1601040CrossRefGoogle Scholar
  9. 9.
    Medishetty R, Nalla V, Nemec L, et al. A new class of lasing materials: intrinsic stimulated emission from nonlinear optically active metal-organic frameworks. Adv Mater, 2017, 29: 1605637CrossRefGoogle Scholar
  10. 10.
    Wei Y, Dong H, Wei C, et al. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal-organic frameworks. Adv Mater, 2016, 28: 7424–7429CrossRefGoogle Scholar
  11. 11.
    Yu J, Cui Y, Xu H, et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photonpumped lasing. Nat Commun, 2013, 4: 2719Google Scholar
  12. 12.
    Lu G, Farha OK, Zhang W, et al. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv Mater, 2012, 24: 3970–3974CrossRefGoogle Scholar
  13. 13.
    Wu Y, Li F, Zhu W, et al. Metal-organic frameworks with a threedimensional ordered macroporous structure: dynamic photonic materials. Angew Chem Int Ed, 2011, 50: 12518–12522CrossRefGoogle Scholar
  14. 14.
    Yanai N, Granick S. Directional self-assembly of a colloidal metalorganic framework. Angew Chem Int Ed, 2012, 51: 5638–5641CrossRefGoogle Scholar
  15. 15.
    Yanai N, Sindoro M, Yan J, et al. Electric field-induced assembly of monodisperse polyhedral metal–organic framework crystals. J Am Chem Soc, 2013, 135: 34–37CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat Mater, 2017, 16: 532–536CrossRefGoogle Scholar
  17. 17.
    Huang XC, Lin YY, Zhang JP, et al. Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45: 1557–1559CrossRefGoogle Scholar
  18. 18.
    Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191CrossRefGoogle Scholar
  19. 19.
    Cravillon J, Munzer S, Lohmeier SJ, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater, 2009, 21: 1410–1412CrossRefGoogle Scholar
  20. 20.
    Gadipelli S, Travis W, Zhou W, et al. A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ Sci, 2014, 7: 2232–2238CrossRefGoogle Scholar
  21. 21.
    Li P, Zeng HC. Immobilization of metal–organic framework nanocrystals for advanced design of supported nanocatalysts. ACS Appl Mater Interfaces, 2016, 8: 29551–29564CrossRefGoogle Scholar
  22. 22.
    Tsai CW, Langner EHG. The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater, 2016, 221: 8–13CrossRefGoogle Scholar
  23. 23.
    Deria P, Mondloch JE, Karagiaridi O, et al. Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev, 2014, 43: 5896–5912CrossRefGoogle Scholar
  24. 24.
    Morabito JV, Chou LY, Li Z, et al. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal–organic framework crystals. J Am Chem Soc, 2014, 136: 12540–12543CrossRefGoogle Scholar
  25. 25.
    Ye JW, Zhou HL, Liu SY, et al. Encapsulating pyrene in a metal–organic zeolite for optical sensing of molecular oxygen. Chem Mater, 2015, 27: 8255–8260CrossRefGoogle Scholar
  26. 26.
    Hagen N, Dereniak EL. Gaussian profile estimation in two dimensions. Appl Opt, 2008, 47: 6842CrossRefGoogle Scholar
  27. 27.
    Magde D, Wong R, Seybold PG. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. PhotoChem PhotoBiol, 2007, 75: 327–334CrossRefGoogle Scholar
  28. 28.
    Medishetty R, Zaręba JK, Mayer D, et al. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem Soc Rev, 2017, 46: 4976–5004CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jia-Wen Ye (叶嘉文)
    • 1
  • Xuehong Zhou (周学宏)
    • 2
  • Yu Wang (王昱)
    • 1
  • Rui-Kang Huang (黄瑞康)
    • 1
  • Hao-Long Zhou (周浩龙)
    • 1
  • Xiao-Ning Cheng (程小宁)
    • 1
  • Yuguang Ma (马於光)
    • 2
  • Jie-Peng Zhang (张杰鹏)
    • 1
  1. 1.MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of ChemistrySun Yat-Sen UniversityGuangzhouChina
  2. 2.Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & DevicesSouth China University of TechnologyGuangzhouChina

Personalised recommendations