Advertisement

Science China Materials

, Volume 61, Issue 6, pp 869–877 | Cite as

A simple green approach to synthesis of sub-100 nm carbon spheres as template for TiO2 hollow nanospheres with enhanced photocatalytic activities

  • Yubo Tan (谭余波)
  • Maochang Liu (刘茂昌)
  • Daixing Wei (魏代星)
  • Heming Tang (唐鹤鸣)
  • Xinjian Feng (封心建)
  • Shaohua Shen (沈少华)
Articles
  • 384 Downloads

Abstract

Carbon spheres (CSs) have attracted great attention given their wide applications in bio-diagnostics, photonic band-gap crystals and drug delivery, etc. The morphology and size of CSs greatly affect their performances and applications. Herein, we report a green and catalyst-free hydrothermal carbonization (HTC) method to synthesize CSs with glucose as carbon precursor. The diameter of CSs can be tuned within a wide range from 450 to 40 nm by controlling the glucose concentration, reaction time and temperature. Using the obtained CSs as template, hollow TiO2 nanospheres (HTNSs) with controllable diameters are prepared via a sol-gel method. As photocatalysts for hydrogen generation, the photoactivity of the HTNSs shows strong dependence upon size, and is much higher than that of solid TiO2. With particle size decreasing, the photoactivity of the obtained HTNSs gradually increases. Without any co-catalyst, the highest photocatalytic hydrogen generation activity is obtained with HTNSs of 40 nm in diameter, which exceeds that of solid TiO2 and commercial P25 by 64 times and 3 times, respectively.

Keywords

carbon nanospheres hydrothermal carbonization hollow titanium dioxide nanospheres photocatalytic hydrogen production 

直径小于100 nm空心二氧化钛纳米球的简单绿色可控合成及其光催化产氢性能研究

摘要

碳球(CSs)因其在生物诊断、 光子带隙晶体及药物输送等方面的广泛应用而成为该领域的研究热点, 而这些应用与碳球自身的形貌及尺寸息息相关. 在此, 我们实现了无任何催化剂及表面活性剂的情况下, 以葡萄糖为前驱体, 通过水热法成功制备形貌规整的碳球. 同时, 通过控制葡萄糖的浓度、 反应时间和温度, 实现碳球尺寸在40–450 nm的可控调节. 进一步地我们以不同粒径的碳球为模板, 通过溶胶-凝胶法合成了不同粒径的中空二氧化钛纳米球(HTNSs), 并以其为催化剂进行光催化产氢实验. 结果表明, HTNSs的光催化活性与粒径有着紧密联系, 随着粒径的减小, 光催化活性得到显著增强. 同时, 不同尺寸HTNSs的光催化活性都远高于同样方法合成的实心二氧化钛纳米颗粒, 尤其是直径为40 nm的HTNSs的产氢量, 分别达到了实心二氧化钛颗粒及商业P25的64倍和3倍.

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51672210, 51323011 and 51236007), and the Natural Science Foundation of Shaanxi Province (2014KW07-02). Shen S was supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (201335), the National Program for Support of Top-notch Young Professionals and the “Fundamental Research Funds for the Central Universities”.

Supplementary material

40843_2017_9183_MOESM1_ESM.pdf (1001 kb)
A simple green approach to synthesis of sub-100 nm carbon spheres as template for TiO2 hollow nanospheres with enhanced photocatalytic activities

References

  1. 1.
    O’Regan B, Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740CrossRefGoogle Scholar
  2. 2.
    Chen X, Mao S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959CrossRefGoogle Scholar
  3. 3.
    Wang B, Shen S, Mao S. Black TiO2 for solar hydrogen conversion. J Materiomics, 2017, 3: 96–111CrossRefGoogle Scholar
  4. 4.
    Cong H, Zhang M, Chen Y, et al. Highly selective CO2 capture by nitrogen enriched porous carbons. Carbon, 2015, 92: 297–304CrossRefGoogle Scholar
  5. 5.
    Jiang Z, Wei W, Mao D, et al. Silver-loaded nitrogen-doped yolk–shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale, 2015, 7: 784–797CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Zhao Z, Chen J, et al. C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl Catal B-Environ, 2015, 165: 715–722CrossRefGoogle Scholar
  7. 7.
    Liu Y, Shen S, Ren F, et al. Fabrication of porous TiO2 nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation. Nanoscale, 2016, 8: 10642–10648CrossRefGoogle Scholar
  8. 8.
    Zhong Z, Yin Y, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv Mater, 2000, 12: 206–209CrossRefGoogle Scholar
  9. 9.
    Yang H, Zeng H. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. J Phys Chem B, 2004, 108: 3492–3495CrossRefGoogle Scholar
  10. 10.
    Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570CrossRefGoogle Scholar
  11. 11.
    Wang M, Pyeon M, Gönüllü Y, et al. Constructing Fe2O3/TiO2 core–shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale, 2015, 7: 10094–10100CrossRefGoogle Scholar
  12. 12.
    Hulteen J, Martin C. A general template-based method for the preparation of nanomaterials. J Mater Chem, 1997, 7: 1075–1087CrossRefGoogle Scholar
  13. 13.
    Gao A, Xu W, Ponce de León Y, et al. Controllable fabrication of Au nanocups by confined-space thermal dewetting for OCT imaging. Adv Mater, 2017, 29: 1701070CrossRefGoogle Scholar
  14. 14.
    Joo J, Zhang Q, Dahl M, et al. Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. J Mater Res, 2013, 28: 362–368CrossRefGoogle Scholar
  15. 15.
    Gao M, Zhu L, Ong W, et al. Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catal Sci Technol, 2015, 5: 4703–4726CrossRefGoogle Scholar
  16. 16.
    Rahman M, Tajabadi F, Shooshtari L, et al. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism. ChemPhysChem, 2011, 12: 966–973CrossRefGoogle Scholar
  17. 17.
    Rosseler O, Shankar M, Du M, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/ rutile) photocatalysts: Influence of noble metal and porogen promotion. J Catal, 2010, 269: 179–190CrossRefGoogle Scholar
  18. 18.
    Li A, Zhang P, Chang X, et al. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small, 2015, 11: 1892–1899CrossRefGoogle Scholar
  19. 19.
    Lyu F, Bai Y, Li Z, et al. Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution. Adv Funct Mater, 2017, 27: 1702324CrossRefGoogle Scholar
  20. 20.
    Yao C, Shin Y, Wang L, et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C, 2007, 111: 15141–15145CrossRefGoogle Scholar
  21. 21.
    Li S, Pasc A, Fierro V, et al. Hollow carbon spheres, synthesis and applications–a review. J Mater Chem A, 2016, 4: 12686–12713CrossRefGoogle Scholar
  22. 22.
    Cai T, Xing W, Liu Z, et al. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86: 235–244CrossRefGoogle Scholar
  23. 23.
    Hu B, Wang K, Wu L, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater, 2010, 22: 813–828CrossRefGoogle Scholar
  24. 24.
    Li X, Chen F, Lu X, et al. Layer-by-layer synthesis of hollow spherical CeO2 templated by carbon spheres. J Porous Mater, 2010, 17: 297–303CrossRefGoogle Scholar
  25. 25.
    Sun X, Liu J, Li Y. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem Eur J, 2006, 12: 2039–2047CrossRefGoogle Scholar
  26. 26.
    Titirici M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev, 2010, 39: 103–116CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Yang W, Luo R, et al. Preparation of carbon nanospheres by non-catalytic chemical vapor deposition and their formation mechanism. New Carbon Mater, 2016, 31: 467–474CrossRefGoogle Scholar
  28. 28.
    Zhao X, Li W, Zhang S, et al. Facile fabrication of hollow and honeycomb-like carbon spheres from liquefied larch sawdust via ultrasonic spray pyrolysis. Mater Lett, 2015, 157: 135–138CrossRefGoogle Scholar
  29. 29.
    Gong J, Liu J, Chen X, et al. Synthesis, characterization and growth mechanism of mesoporous hollow carbon nanospheres by catalytic carbonization of polystyrene. Micropor Mesopor Mater, 2013, 176: 31–40CrossRefGoogle Scholar
  30. 30.
    Wang Q, Li H, Chen L, et al. Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39: 2211–2214CrossRefGoogle Scholar
  31. 31.
    Li Y, Li T, Yao M, et al. Metal-free nitrogen-doped hollow carbon spheres synthesized by thermal treatment of poly(o-phenylenediamine) for oxygen reduction reaction in direct methanol fuel cell applications. J Mater Chem, 2012, 22: 10911–10917CrossRefGoogle Scholar
  32. 32.
    Xu D, Bu Q, Wang D, et al. Enhanced photoelectrochemical water oxidation performance by altering the interfacial charge transfer path. Inorg Chem Front, 2017, 4: 1296–1303CrossRefGoogle Scholar
  33. 33.
    Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed, 2004, 43: 597–601CrossRefGoogle Scholar
  34. 34.
    Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref, 2010, 4: 160–177CrossRefGoogle Scholar
  35. 35.
    Crossland E, Noel N, Sivaram V, et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013, 495: 215–219CrossRefGoogle Scholar
  36. 36.
    Boury B, Plumejeau S. Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem, 2015, 17: 72–88CrossRefGoogle Scholar
  37. 37.
    Hu C, Xu Y, Duo S, et al. Preparation of inorganic hollow spheres based on different methods. Jnl Chin Chem Soc, 2010, 57: 1091–1098CrossRefGoogle Scholar
  38. 38.
    Niu F, Shen S, Guo L. A noble-metal-free artificial photosynthesis system with TiO2 as electron relay for efficient photocatalytic hydrogen evolution. J Catal, 2016, 344: 141–147CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yubo Tan (谭余波)
    • 1
  • Maochang Liu (刘茂昌)
    • 1
  • Daixing Wei (魏代星)
    • 1
  • Heming Tang (唐鹤鸣)
    • 2
  • Xinjian Feng (封心建)
    • 2
  • Shaohua Shen (沈少华)
    • 1
  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations