Advertisement

Science China Materials

, Volume 61, Issue 6, pp 839–850 | Cite as

Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets

  • Hongmei Wang (王红梅)
  • Sara Bonabi Naghadeh
  • Chunhe Li (李春鹤)
  • Lu Ying (应露)
  • A’Lester Allen
  • Jin Zhong Zhang (张金中)
Articles
  • 272 Downloads

Abstract

Nanocomposites composed of one-dimensional (1D) CdS nanowires (NWs) and 1T-MoS2 nanosheets have been fabricated through a two-step solvothermal process. 5 mol% of MoS2 loading results in the best optical properties, photoelectrochemical (PEC) as well as photocatalytic activities for hydrogen evolution reaction (HER). Compared with pure CdS NWs, the optimized nanocomposite shows 5.5 times enhancement in photocurrent and 86.3 times increase for HER in the presence of glucose and lactic acid as hole scavengers. The enhanced PEC and HER activities are attributed to the intimate contact between MoS2 and CdS that efficiently enhances charge carrier separation. In addition, ultrafast transient absorption (TA) measurements have been used to probe the charge carrier dynamics and gain deeper insight into the mechanism behind the enhanced PEC and photocatalytic performance.

Keywords

MoS2/CdS nanostructures surface modification photoelectrochemical activity photocatalytic hydrogen evolution glucose and lactic acid 

MoS2纳米片/CdS纳米线复合光催化剂的制备及其光电化学和光催化活性研究

摘要

本论文通过两步水热法合成了MoS2纳米片/CdS纳米线复合光催化剂. 采用扫描电子显微镜、透射电子显微镜、X射线粉末衍射仪、拉曼光谱仪、X射线光电子能谱仪、比表面积分析仪、紫外可见漫反射光谱仪、荧光光谱方法和光电化学测试对复合光催化剂进行了表征. 研究表明复合光催化剂的性能和MoS2负载量的多少密切相关. 当MoS2的负载量为5 mol%时复合光催化剂具有最优的光学、光电化学和光催化产氢活性. 与纯的CdS纳米线相比, 优化后的复合光催化剂以葡萄糖和乳酸为空穴牺牲剂, 光电流提高了5.5倍, 光催化产氢活性提高了74倍, 这主要归因于MoS2纳米片和CdS纳米线之间的紧密接触有利于提高电荷的分离效率. 为了进一步理解光电化学和光催化活性提高的机理, 采用瞬态吸收光谱仪深入探究了电荷分离和转移的动力学过程. 该工作不仅涉及了具有优良光电化学和光催化活性的复合光催化剂的制备方法, 而且展示了葡萄糖在光解水产氢中的应用.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51402126). JZZ is grateful to support from Delta Dental Health Associates, NASA through MACES (NNX15AQ01A), and UCSC Committee on Research Special Research Grant.

Supplementary material

40843_2017_9172_MOESM1_ESM.pdf (3.3 mb)
Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets

References

  1. 1.
    Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev, 2010, 110: 6446–6473CrossRefGoogle Scholar
  2. 2.
    Katz MJ, Riha SC, Jeong NC, et al. Toward solar fuels: water splitting with sunlight and “rust”? Coord Chem Rev, 2012, 256: 2521–2529CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  4. 4.
    Cho IS, Chen Z, Forman AJ, et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett, 2011, 11: 4978–4984CrossRefGoogle Scholar
  5. 5.
    Pu YC, Wang G, Chang KD, et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett, 2013, 13: 3817–3823CrossRefGoogle Scholar
  6. 6.
    Li C, Fan W, Lu H, et al. Fabrication of Au@CdS/RGO/TiO2 heterostructure for photoelectrochemical hydrogen production. New J Chem, 2016, 40: 2287–2295CrossRefGoogle Scholar
  7. 7.
    Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2011, 414: 625–627CrossRefGoogle Scholar
  8. 8.
    Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnSCuInS2- AgInS2 solid-solution photocatalyst. Angew Chem, 2005, 117: 3631–3634CrossRefGoogle Scholar
  9. 9.
    Li C, Wang H, Ming J, et al. Hydrogen generation by photocatalytic reforming of glucose with heterostructured CdS/MoS2 composites under visible light irradiation. Int J Hydrogen Energ, 2017, 42: 16968–16978CrossRefGoogle Scholar
  10. 10.
    Li Y, Chen G, Zhou C, et al. A simple template-free synthesis of nanoporous ZnS–In2S3–Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chem Commun, 2009, 414: 2020CrossRefGoogle Scholar
  11. 11.
    Wang X, Maeda K, Chen X, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc, 2009, 131: 1680–1681CrossRefGoogle Scholar
  12. 12.
    Liu X, Pan L, Lv T, et al. Microwave-assisted synthesis of CdS–reduced graphene oxide composites for photocatalytic reduction of Cr(vi). Chem Commun, 2011, 47: 11984–11986CrossRefGoogle Scholar
  13. 13.
    Li Q, Guo B, Yu J, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc, 2011, 133: 10878–10884CrossRefGoogle Scholar
  14. 14.
    Hu Y, Gao X, Yu L, et al. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem Int Ed, 2013, 52: 5636–5639CrossRefGoogle Scholar
  15. 15.
    Xu Y, Zhao W, Xu R, et al. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem Commun, 2013, 49: 9803–9805CrossRefGoogle Scholar
  16. 16.
    Zheng W, Feng W, Zhang X, et al. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv Funct Mater, 2016, 26: 2648–2654CrossRefGoogle Scholar
  17. 17.
    Li Y, Wang L, Cai T, et al. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem Eng J, 2017, 321: 366–374CrossRefGoogle Scholar
  18. 18.
    Si H, Kang Z, Liao Q, et al. Design and tailoring of patterned ZnO nanostructures for energy conversion applications. Sci China Mater, 2017, 60: 793–810CrossRefGoogle Scholar
  19. 19.
    Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J Catal, 2009, 266: 165–168CrossRefGoogle Scholar
  20. 20.
    Merki D, Hu X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci, 2011, 4: 3878–3888CrossRefGoogle Scholar
  21. 21.
    Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc, 2008, 130: 7176–7177CrossRefGoogle Scholar
  22. 22.
    Zong X, Wu G, Yan H, et al. Photocatalytic H2 evolution on MoS2/ CdS catalysts under visible light irradiation. J Phys Chem C, 2010, 114: 1963–1968CrossRefGoogle Scholar
  23. 23.
    Chen G, Li D, Li F, et al. Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H2 evolution activity under visible light irradiation. Appl Catal AGeneral, 2012, 443–444: 138–144CrossRefGoogle Scholar
  24. 24.
    Chen J, Wu XJ, Yin L, et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed, 2015, 54: 1210–1214CrossRefGoogle Scholar
  25. 25.
    Chang K, Li M, Wang T, et al. Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2 /CdS (n≥1) under visible light. Adv Energy Mater, 2015, 5: 1402279CrossRefGoogle Scholar
  26. 26.
    He J, Chen L, Wang F, et al. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. ChemSusChem, 2016, 9: 624–630CrossRefGoogle Scholar
  27. 27.
    Han B, Liu S, Zhang N, et al. One-dimensional CdS@MoS2 coreshell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl Catal B-Environ, 2017, 202: 298–304CrossRefGoogle Scholar
  28. 28.
    Ma S, Xie J, Wen J, et al. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl Surf Sci, 2017, 391: 580–591CrossRefGoogle Scholar
  29. 29.
    Liu C, Dasgupta NP, Yang P. Semiconductor nanowires for artificial photosynthesis. Chem Mater, 2014, 26: 415–422CrossRefGoogle Scholar
  30. 30.
    Han S, Pu YC, Zheng L, et al. Shell-thickness dependent electron transfer and relaxation in type-II core–shell CdS/TiO2 structures with optimized photoelectrochemical performance. J Mater Chem A, 2015, 3: 22627–22635CrossRefGoogle Scholar
  31. 31.
    Zhan X, Wang Q, Wang F, et al. Composition-tuned ZnO/Znx Cd1–xTe core/shell nanowires array with broad spectral absorption from UV to NIR for hydrogen generation. ACS Appl Mater Interfaces, 2014, 6: 2878–2883CrossRefGoogle Scholar
  32. 32.
    Zhu G, Bao C, Liu Y, et al. Self-regulated route to ternary hybrid nanocrystals of Ag–Ag2S–CdS with near-infrared photoluminescence and enhanced photothermal conversion. Nanoscale, 2014, 6: 11147–11156CrossRefGoogle Scholar
  33. 33.
    Liu Q, Shang Q, Khalil A, et al. In situ integration of a metallic 1TMoS2/ CdS heterostructure as a means to promote visible-lightdriven photocatalytic hydrogen evolution. ChemCatChem, 2016, 8: 2614–2619CrossRefGoogle Scholar
  34. 34.
    Weber T, Muijsers JC, van Wolput JHMC, et al. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J Phys Chem, 1996, 100: 14144–14150CrossRefGoogle Scholar
  35. 35.
    Zhao L, Jia J, Yang Z, et al. One-step synthesis of CdS nanoparticles/ MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl Catal B–Environ, 2017, 210: 290–296CrossRefGoogle Scholar
  36. 36.
    Xu J, Cao X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chem Eng J, 2015, 260: 642–648CrossRefGoogle Scholar
  37. 37.
    Yang Y, Rodríguez-Córdoba W, Xiang X, et al. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett, 2012, 12: 303–309CrossRefGoogle Scholar
  38. 38.
    Zhang J, Wang L, Liu X, et al. High-performance CdS–ZnS core–shell nanorod array photoelectrode for photoelectrochemical hydrogen generation. J Mater Chem A, 2015, 3: 535–541CrossRefGoogle Scholar
  39. 39.
    Li J, Cushing SK, Zheng P, et al. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc, 2014, 136: 8438–8449CrossRefGoogle Scholar
  40. 40.
    Shen L, Luo M, Liu Y, et al. Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Appl Catal B-Environ, 2015, 166–167: 445–453CrossRefGoogle Scholar
  41. 41.
    Li G, Wu L, Li F, et al. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale, 2013, 5: 2118–2125CrossRefGoogle Scholar
  42. 42.
    Bai Z, Yan X, Li Y, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv Energy Mater, 2016, 6: 1501459CrossRefGoogle Scholar
  43. 43.
    Zhan F, Li J, Li W, et al. In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties. J Power Sources, 2016, 325: 591–597CrossRefGoogle Scholar
  44. 44.
    Wang G, Ling Y, Wheeler DA, et al. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett, 2011, 11: 3503–3509CrossRefGoogle Scholar
  45. 45.
    Zhou M, Bao J, Xu Y, et al. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano, 2014, 8: 7088–7098CrossRefGoogle Scholar
  46. 46.
    Wheeler DA, Zhang JZ. Exciton dynamics in semiconductor nanocrystals. Adv Mater, 2013, 25: 2878–2896CrossRefGoogle Scholar
  47. 47.
    Shen S, Guo P, Wheeler DA, et al. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 2013, 5: 9867–9874CrossRefGoogle Scholar
  48. 48.
    Caravaca A, Jones W, Hardacre C, et al. H2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proc R Soc A, 2016, 472: 20160054CrossRefGoogle Scholar
  49. 49.
    Wang L, Wang W, Shang M, et al. Enhanced photocatalytic hydrogen evolution under visible light over Cd1−xZnxS solid solution with cubic zinc blend phase. Int J Hydrogen Energ, 2010, 35: 19–25CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongmei Wang (王红梅)
    • 1
    • 2
  • Sara Bonabi Naghadeh
    • 2
  • Chunhe Li (李春鹤)
    • 3
  • Lu Ying (应露)
    • 1
  • A’Lester Allen
    • 2
  • Jin Zhong Zhang (张金中)
    • 2
  1. 1.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingChina
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of EducationWuhan UniversityWuhanChina

Personalised recommendations