Science China Materials

, Volume 61, Issue 6, pp 861–868 | Cite as

Novel Cu3P/g-C3N4 p-n heterojunction photocatalysts for solar hydrogen generation

  • Zhixiao Qin (秦知校)
  • Menglong Wang (王朦胧)
  • Rui Li (李锐)
  • Yubin Chen (陈玉彬)
Articles

Abstract

Developing efficient heterostructured photocatalysts to accelerate charge separation and transfer is crucial to improving photocatalytic hydrogen generation using solar energy. Herein, we report for the first time that p-type copper phosphide (Cu3P) coupled with n-type graphitic carbon nitride (g-C3N4) forms a p-n junction to accelerate charge separation and transfer for enhanced photocatalytic activity. The optimized Cu3P/g-C3N4 p-n heterojunction photocatalyst exhibits 95 times higher activity than bare g-C3N4, with an apparent quantum efficiency of 2.6% at 420 nm. A detail analysis of the reaction mechanism by photoluminescence, surface photovoltaics and electrochemical measurements revealed that the improved photocatalytic activity can be ascribed to efficient separation of photo-induced charge carriers. This work demonstrates that p-n junction structure is a useful strategy for developing efficient heterostructured photocatalysts.

Keywords

photocatalysis copper phosphide p-n junction heterostructure hydrogen production 

新型磷化铜/氮化碳p-n异质结光催化剂的太阳能产氢性能研究

摘要

开发高效的异质结光催化剂促进电荷的分离和转移对提高太阳能光催化产氢性能至关重要. 本文采用p型的磷化铜和n型的氮化碳形成p-n结来促进电荷分离和转移, 从而提高光催化产氢性能. 与纯的氮化碳相比, 磷化铜/氮化碳p-n异质结光催化剂的产氢性能提高了95倍, 在420纳米处的量子效率达到2.6%. 我们通过荧光光谱, 表面光电压谱以及电化学测试进一步分析反应机理, 发现显著提高的光催化产氢性能应归因于p-n异质结光催化剂中高效的电荷分离. 本研究表明形成p-n异质结是开发高效光催化剂的一种有效途径.

Notes

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (21606175), the grant support from the China Postdoctoral Science Foundation (2014M560768), and the China Fundamental Research Funds for the Central Universities (xjj2015041).

Supplementary material

40843_2017_9171_MOESM1_ESM.pdf (250 kb)
Novel Cu3P/g-C3N4 p-n heterojunction photocatalysts for solar hydrogen generation

References

  1. 1.
    Gray HB. Powering the planet with solar fuel. Nat Chem, 2009, 1: 7CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  3. 3.
    Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570CrossRefGoogle Scholar
  4. 4.
    Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater, 2012, 24: 229–251CrossRefGoogle Scholar
  5. 5.
    Zhang K, Guo L. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol, 2013, 3: 1672–1690CrossRefGoogle Scholar
  6. 6.
    Su J, Zhou J, Wang L, et al. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci Bull, 2017, 62: 633–644CrossRefGoogle Scholar
  7. 7.
    Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80CrossRefGoogle Scholar
  8. 8.
    Liu G, Wang T, Zhang H, et al. Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew Chem, 2015, 127: 13765–13769CrossRefGoogle Scholar
  9. 9.
    Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347: 970–974CrossRefGoogle Scholar
  10. 10.
    Li Y, Xu H, Ouyang S, et al. In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visiblelight irradiation. J Mater Chem A, 2016, 4: 2943–2950CrossRefGoogle Scholar
  11. 11.
    Ong WJ, Tan LL, Ng YH, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev, 2016, 116: 7159–7329CrossRefGoogle Scholar
  12. 12.
    Qin Z, Chen Y, Wang X, et al. Intergrowth of cocatalysts with host photocatalysts for improved solar-to-hydrogen conversion. ACS Appl Mater Interfaces, 2016, 8: 1264–1272CrossRefGoogle Scholar
  13. 13.
    Chang K, Mei Z, Wang T, et al. MoS2/Graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano, 2014, 8: 7078–7087CrossRefGoogle Scholar
  14. 14.
    Yang J, Wang D, Han H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res, 2013, 46: 1900–1909CrossRefGoogle Scholar
  15. 15.
    Maeda K, Wang X, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C, 2009, 113: 4940–4947CrossRefGoogle Scholar
  16. 16.
    Chen Y, Qin Z. General applicability of nanocrystalline Ni2P as a noble-metal-free cocatalyst to boost photocatalytic hydrogen generation. Catal Sci Technol, 2016, 6: 8212–8221CrossRefGoogle Scholar
  17. 17.
    Yi SS, Yan JM, Wulan BR, et al. Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation. Appl Catal B-Environ, 2017, 200: 477–483CrossRefGoogle Scholar
  18. 18.
    Indra A, Acharjya A, Menezes PW, et al. Boosting visible-lightdriven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system. Angew Chem Int Ed, 2017, 56: 1653–1657CrossRefGoogle Scholar
  19. 19.
    Zhao H, Sun S, Jiang P, et al. Graphitic C3N4 modified by Ni2P cocatalyst: an efficient, robust and low cost photocatalyst for visible-light-driven H2 evolution from water. Chem Eng J, 2017, 315: 296–303CrossRefGoogle Scholar
  20. 20.
    Sun Z, Zheng H, Li J, et al. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ Sci, 2015, 8: 2668–2676CrossRefGoogle Scholar
  21. 21.
    Cao S, Chen Y, Wang CJ, et al. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chem Commun, 2015, 51: 8708–8711CrossRefGoogle Scholar
  22. 22.
    Sun Z, Yue Q, Li J, et al. Copper phosphide modified cadmium sulfide nanorods as a novel p-n heterojunction for highly efficient visible-light-driven hydrogen production in water. J Mater Chem A, 2015, 3: 10243–10247CrossRefGoogle Scholar
  23. 23.
    Yue X, Yi S, Wang R, et al. A novel and highly efficient earthabundant Cu3P with TiO2 “P-N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale, 2016, 8: 17516–17523CrossRefGoogle Scholar
  24. 24.
    Qin Z, Xue F, Chen Y, et al. Spatial charge separation of onedimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for highquantum-yield photocatalytic hydrogen production. Appl Catal BEnviron, 2017, 217: 551–559CrossRefGoogle Scholar
  25. 25.
    Chen Y, Qin Z, Wang X, et al. Noble-metal-free Cu2S-modified photocatalysts for enhanced photocatalytic hydrogen production by forming nanoscale p-n junction structure. RSC Adv, 2015, 5: 18159–18166CrossRefGoogle Scholar
  26. 26.
    Chen Y, Wang L, Lu GM, et al. Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. J Mater Chem, 2011, 21: 5134–5141CrossRefGoogle Scholar
  27. 27.
    Meng F, Li J, Cushing SK, et al. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J Am Chem Soc, 2013, 135: 10286–10289CrossRefGoogle Scholar
  28. 28.
    Manna G, Bose R, Pradhan N. Semiconducting and plasmonic copper phosphide platelets. Angew Chem Int Ed, 2013, 52: 6762–6766CrossRefGoogle Scholar
  29. 29.
    Ni S, Ma J, Lv X, et al. The fine electrochemical performance of porous Cu3P/Cu and the high energy density of Cu3P as anode for Li-ion batteries. J Mater Chem A, 2014, 2: 20506–20509CrossRefGoogle Scholar
  30. 30.
    Villevieille C, Robert F, Taberna PL, et al. The good reactivity of lithium with nanostructured copper phosphide. J Mater Chem, 2008, 18: 5956–5960CrossRefGoogle Scholar
  31. 31.
    Liang Q, Li Z, Yu X, et al. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater, 2015, 27: 4634–4639CrossRefGoogle Scholar
  32. 32.
    Xiong J, Wang Y, Xue Q, et al. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem, 2011, 13: 900–904CrossRefGoogle Scholar
  33. 33.
    Butler MA. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys, 1977, 48: 1914–1920CrossRefGoogle Scholar
  34. 34.
    Zhang G, Lan ZA, Lin L, et al. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci, 2016, 7: 3062–3066CrossRefGoogle Scholar
  35. 35.
    Chen Z, Berciaud S, Nuckolls C, et al. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano, 2010, 4: 2964–2968CrossRefGoogle Scholar
  36. 36.
    Han C, Wu L, Ge L, et al. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation. Carbon, 2015, 92: 31–40CrossRefGoogle Scholar
  37. 37.
    Bi L, Xu D, Zhang L, et al. Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending. Phys Chem Chem Phys, 2015, 17: 29899–29905CrossRefGoogle Scholar
  38. 38.
    Cao S, Low J, Yu J, et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater, 2015, 27: 2150–2176CrossRefGoogle Scholar
  39. 39.
    Qin Z, Chen Y, Huang Z, et al. Composition-dependent catalytic activities of noble-metal-free NiS/Ni3S4 for hydrogen evolution reaction. J Phys Chem C, 2016, 120: 14581–14589CrossRefGoogle Scholar
  40. 40.
    Zhang J, Qi L, Ran J, et al. Ternary NiS/Znx Cd1-xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity. Adv Energy Mater, 2014, 4: 1301925CrossRefGoogle Scholar
  41. 41.
    Chen J, Shen S, Guo P, et al. In-situ reduction synthesis of nanosized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl Catal B-Environ, 2014, 152-153: 335–341CrossRefGoogle Scholar
  42. 42.
    Chen Y, Qin Z, Chen T, et al. Optimization of (Cu2Sn)xZn3(1-x)S3/CdS pn junction photoelectrodes for solar water reduction. RSC Adv, 2016, 6: 58409–58416CrossRefGoogle Scholar
  43. 43.
    Kronik L, Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep, 1999, 37: 1–206CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhixiao Qin (秦知校)
    • 1
  • Menglong Wang (王朦胧)
    • 1
  • Rui Li (李锐)
    • 1
  • Yubin Chen (陈玉彬)
    • 1
  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityShaanxiChina

Personalised recommendations