Science China Materials

, Volume 61, Issue 6, pp 878–886 | Cite as

Construct Fe2+ species and Au particles for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation

  • Dong He (贺栋)
  • Xianyin Song (宋先印)
  • Zunjian Ke (柯尊健)
  • Xiangheng Xiao (肖湘衡)
  • Changzhong Jiang (蒋昌忠)


Photoelectrochemical (PEC) water splitting is a promising approach to producing H2 and O2. Hematite (α-Fe2O3) is considered one of the most promising photoelectrodes for PEC water splitting, due to its good photochemical stability, non-toxicity, abundance in earth, and suitable bandgap (Eg∼2.1 eV). However, the PEC water splitting efficiency of hematite is severely hampered by its short hole diffusion length (2–4 nm), poor conductivity, and ultrafast recombination of photogenerated carriers (about 10 ps). Here, we show a novel and effective method for significantly improving the PEC water splitting performance of hematite by Au ion implantation and the following high-temperature annealing process. Based on a series of characterizations and analyses, we have found Fe2+ species and tightly attached Au particles were produced at Au-implanted hematite. As a result, the charge separation and charge injection efficiency of Au-implanted Fe2O3 are markedly increased. The photocurrent density of optimized Au-implanted Fe2O3 could reach 1.16 mA cm−2 at 1.5 V vs. RHE which was nearly 300 times higher than that of the pristine Fe2O3 (4 μA cm−2). Furthermore, the Au-implanted Fe2O3 photoelectrode exhibited great stability for the 8-hour PEC water splitting test without photocurrent decay.


hematite Fe2+ species photoelectrochemical water splitting ion implantation 



光电化学催化分解水是一种极具发展前景的生产H2和O2的方法. α-Fe2O3由于其具有优良的光电化学稳定性、 无毒害、 地球储量大以及合适的能带宽度Eg∼2.1 eV等优点, 被认为是最有潜力的光电催化分解水的材料之一. 然而由于其空穴传输距离短(约2∼4 nm)、 导电性差、 光生载流子复合速度极快等原因, α-Fe2O3的光电催化分解水的效率受到了极大限制. 在此, 我们报道了一种新颖并且高效的离子注 入Au元素并且退火的方法显著提高了α-Fe2O3光电化学分解水的效率. 根据一系列的表征和分析, 发现Fe2+和紧密接触的金颗粒在金注入的α-Fe2O3样品中产生. 因此, 金注入的α-Fe2O3样品的载流子分离效率和注入效率得到了显著提高. 该样品光电流密度在1.5 V vs. RHE偏压下可以达到1.16 mA cm−2, 相对原始样品光电流密度提升接近300倍(4 μA cm−2). 此外, 金注入的α-Fe2O3样品在8 h的光电催化分解水的测试中没有出现光电流衰减的现象, 表现了良好的稳定性.



This work was supported by the National Natural Science Foundation of China (51371131, 11375134, 51571153 and 11722543), and the Fundamental Research Funds for the Central Universities (2042017kf0168).

Supplementary material

40843_2017_9155_MOESM1_ESM.pdf (384 kb)
Supporting information


  1. 1.
    Wheeler DA, Wang G, Ling Y, et al. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ Sci, 2012, 5: 6682–6702CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  3. 3.
    Yang C, Wang Z, Lin T, et al. Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J Am Chem Soc, 2013, 135: 17831–17838CrossRefGoogle Scholar
  4. 4.
    Warren SC, Voïtchovsky K, Dotan H, et al. Identifying champion nanostructures for solar water-splitting. Nat Mater, 2013, 12: 842–849CrossRefGoogle Scholar
  5. 5.
    Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347: 970–974CrossRefGoogle Scholar
  6. 6.
    Qiu Y, Liu W, Chen W, et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv, 2016, 2: e1501764CrossRefGoogle Scholar
  7. 7.
    Morales-Guio CG, Tilley SD, Vrubel H, et al. Hydrogen evolution from a copper (I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun, 2014, 5: 3059CrossRefGoogle Scholar
  8. 8.
    Wu H, Ren F, Xing Z, et al. Cathodic shift of onset potential for water oxidation of WO3 photoanode by Zr+ ions implantation. J Appl Phys, 2017, 121: 085305CrossRefGoogle Scholar
  9. 9.
    Li Z, Luo W, Zhang M, et al. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci, 2013, 6: 347–370CrossRefGoogle Scholar
  10. 10.
    Han T, Chen Y, Tian G, et al. Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution. Sci China Mater, 2016, 59: 1003–1016CrossRefGoogle Scholar
  11. 11.
    Liu H, Ma H, Joo J, et al. Contribution of multiple reflections to light utilization efficiency of submicron hollow TiO2 photocatalyst. Sci China Mater, 2016, 59: 1017–1026CrossRefGoogle Scholar
  12. 12.
    Pozun ZD, Henkelman G. Hybrid density functional theory band structure engineering in hematite. J Chem Phys, 2011, 134: 224706CrossRefGoogle Scholar
  13. 13.
    Rozenberg GK, Dubrovinsky LS, Pasternak MP, et al. High-pressure structural studies of hematite Fe2O3. Phys Rev B, 2002, 65: 064112CrossRefGoogle Scholar
  14. 14.
    Glasscock JA, Barnes PRF, Plumb IC, et al. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J Phys Chem C, 2007, 111: 16477–16488CrossRefGoogle Scholar
  15. 15.
    Aroutiounian VM, Arakelyan VM, Shahnazaryan GE, et al. Photoelectrochemistry of tin-doped iron oxide electrodes. Sol Energy, 2007, 81: 1369–1376CrossRefGoogle Scholar
  16. 16.
    Annamalai A, Shinde PS, Jeon TH, et al. Fabrication of superior a-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Sol Energy Mater Sol Cells, 2016, 144: 247–255CrossRefGoogle Scholar
  17. 17.
    Ling Y, Wang G, Wheeler DA, et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett, 2011, 11: 2119–2125CrossRefGoogle Scholar
  18. 18.
    Abel AJ, Patel AM, Smolin SY, et al. Enhanced photoelectrochemical water splitting via SILAR-deposited Ti-doped hematite thin films with an FeOOH overlayer. J Mater Chem A, 2016, 4: 6495–6504CrossRefGoogle Scholar
  19. 19.
    Kay A, Cesar I, Grätzel M. New benchmark for water photooxidation by nanostructured a-Fe2O3 Films. J Am Chem Soc, 2006, 128: 15714–15721CrossRefGoogle Scholar
  20. 20.
    Li M, Yang Y, Ling Y, et al. Morphology and doping engineering of Sn-doped hematite nanowire photoanodes. Nano Lett, 2017, 17: 2490–2495CrossRefGoogle Scholar
  21. 21.
    Ling Y, Wang G, Reddy J, et al. The influence of oxygen content on the thermal activation of hematite nanowires. Angew Chem, 2012, 124: 4150–4155CrossRefGoogle Scholar
  22. 22.
    Forster M, Potter RJ, Ling Y, et al. Oxygen deficient a-Fe2O3 photoelectrodes: a balance between enhanced electrical properties and trap-mediated losses. Chem Sci, 2015, 6: 4009–4016CrossRefGoogle Scholar
  23. 23.
    Wang G, Ling Y, Li Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 2012, 4: 6682–6691CrossRefGoogle Scholar
  24. 24.
    Ling Y, Wang G, Wang H, et al. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. ChemSusChem, 2014, 7: 848–853CrossRefGoogle Scholar
  25. 25.
    Li M, Deng J, Pu A, et al. Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation. J Mater Chem A, 2014, 2: 6727–6733CrossRefGoogle Scholar
  26. 26.
    Kiejna A, Pabisiak T. Surface properties of clean and Au or Pd covered hematite (a-Fe2O3) (0001). J Phys-Condens Matter, 2012, 24: 095003CrossRefGoogle Scholar
  27. 27.
    Warwick MEA, Barreca D, Bontempi E, et al. Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state. Phys Chem Chem Phys, 2015, 17: 12899–12907CrossRefGoogle Scholar
  28. 28.
    Liu W, Liu Z, Wang G, et al. Carbon coated Au/TiO2 mesoporous microspheres: a novel selective photocatalyst. Sci China Mater, 2017, 60: 438–448CrossRefGoogle Scholar
  29. 29.
    Dearnaley G. Ion implantation. Nature, 1975, 256: 701–705CrossRefGoogle Scholar
  30. 30.
    Wang G, Xiao X, Li W, et al. Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation. Nano Lett, 2015, 15: 4692–4698CrossRefGoogle Scholar
  31. 31.
    Vayssieres L, Beermann N, Lindquist SE, et al. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron (III) oxides. Chem Mater, 2001, 13: 233–235CrossRefGoogle Scholar
  32. 32.
    Liu Y, Ren F, Cai G, et al. Energy dependence on formation of TiO2 nanofilms by Ti ion implantation and annealing. Mater Res Bull, 2014, 51: 376–380CrossRefGoogle Scholar
  33. 33.
    Zheng X, Shen S, Ren F, et al. Irradiation-induced TiO2 nanorods for photoelectrochemical hydrogen production. Int J Hydrogen Energy, 2015, 40: 5034–5041CrossRefGoogle Scholar
  34. 34.
    Kim JY, Magesh G, Youn DH, et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep, 2013, 3: 2681CrossRefGoogle Scholar
  35. 35.
    de Faria DLA, Venâncio Silva S, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc, 1997, 28: 873–878CrossRefGoogle Scholar
  36. 36.
    Ding SY, Yi J, Li JF, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater, 2016, 1: 16021CrossRefGoogle Scholar
  37. 37.
    Malviya KD, Dotan H, Shlenkevich D, et al. Systematic comparison of different dopants in thin film hematite (a-Fe2O3) photoanodes for solar water splitting. J Mater Chem A, 2016, 4: 3091–3099CrossRefGoogle Scholar
  38. 38.
    Sander D, Schmidthals C, Enders A, et al. Stress and structure of Ni monolayers on W(110): the importance of lattice mismatch. Phys Rev B, 1998, 57: 1406–1409CrossRefGoogle Scholar
  39. 39.
    Li W, Sheehan SW, He D, et al. Hematite-based solar water splitting in acidic solutions: functionalization by mono-and multilayers of iridium oxygen-evolution catalysts. Angew Chem, 2015, 127: 11590–11594CrossRefGoogle Scholar
  40. 40.
    Fujii T, de Groot FMF, Sawatzky GA, et al. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B, 1999, 59: 3195–3202CrossRefGoogle Scholar
  41. 41.
    Morrish R, Rahman M, MacElroy JMD, et al. Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem, 2011, 4: 474–479CrossRefGoogle Scholar
  42. 42.
    Xiao R, Pelenovich VO, Fu D. Spin cycloid destruction in Pr doped BiFeO3 films studied by conversion-electron Mossbauer spectroscopy. Appl Phys Lett, 2013, 103: 012901CrossRefGoogle Scholar
  43. 43.
    Klingelhöfer G, Morris RV, Bernhardt B, et al. Jarosite and hematite at meridiani planum from opportunity’s mossbauer spectrometer. Science, 2004, 306: 1740–1745CrossRefGoogle Scholar
  44. 44.
    Zheng X, Ren F, Zhang S, et al. A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity. ACS Appl Mater Interfaces, 2017, 9: 14534–14544CrossRefGoogle Scholar
  45. 45.
    Pu A, Deng J, Li M, et al. Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J Mater Chem A, 2014, 2: 2491–2497CrossRefGoogle Scholar
  46. 46.
    Turner NH, Single AM. Determination of peak positions and areas from wide-scan XPS spectra. Surf Interface Anal, 1990, 15: 215–222CrossRefGoogle Scholar
  47. 47.
    Wang H, Turner JA. Characterization of hematite thin films for photoelectrochemical water splitting in a dual photoelectrode device. J Electrochem Soc, 2010, 157: F173CrossRefGoogle Scholar
  48. 48.
    Dotan H, Sivula K, Grätzel M, et al. Probing the photoelectrochemical properties of hematite (a-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci, 2011, 4: 958–964CrossRefGoogle Scholar
  49. 49.
    Xi L, Chiam SY, Mak WF, et al. A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem Sci, 2013, 4: 164–169CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Dong He (贺栋)
    • 1
  • Xianyin Song (宋先印)
    • 1
  • Zunjian Ke (柯尊健)
    • 1
  • Xiangheng Xiao (肖湘衡)
    • 1
  • Changzhong Jiang (蒋昌忠)
    • 1
  1. 1.Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam ApplicationWuhan UniversityWuhanChina

Personalised recommendations