Science China Materials

, Volume 61, Issue 3, pp 363–370 | Cite as

A stable lead halide perovskite nanocrystals protected by PMMA

  • Xiao Li (李晓)
  • Zhenjie Xue (薛振杰)
  • Dan Luo (罗聃)
  • Chuanhui Huang (黄川辉)
  • Lizhi Liu (刘立志)
  • Xuezhi Qiao (乔学志)
  • Cong Liu (刘聪)
  • Qian Song (宋倩)
  • Cong Yan (闫聪)
  • Yingchun Li (李迎春)
  • Tie Wang (王铁)
Articles
  • 393 Downloads

Abstract

To enhance the stability in humidity is very crucial to hybrid organic-inorganic lead halide perovskites in a broad range of applications. This report describes a coating stratergy of perovskite nanocrystals via polymethylmethacrylate-introduced ligand-assisted reprecipitation, using the interactions between the Pb cations on the surface of perovskite nanocrystals and the functional ester carbonyl groups in polymethylmethacrylate framework. The hydrophobic framework shields the open metal sites of hybrid organic-inorganic lead halide perovskites from being attacked by water, effectively retarding the diffusion of water into the perovskite nanocrystals. The as-prepared films demonstrate high resistance to heat and moisture. Additionally, the introduction of polymethylmethacrylate into ligand-assisted reprecipitation can effectively control the bulk precipitation and promote the stability of the perovskite solution.

Keywords

perovskite nanocrystals polymer framework surface coatings interface phase 

一种高分子保护的铅卤钙钛矿纳米晶

摘要

有机-无机杂化铅卤钙钛矿易于加工、 带隙可调、 电荷转移速率高, 是一种具有广泛应用前景的新型光电半导体材料. 在潮湿空气中的稳定性是钙钛矿实现产业化应用亟待解决的问题. 本文介绍了聚甲基丙烯酸甲酯作为配体利用配体辅助再沉淀实现了钙钛矿纳米晶的聚合物包裹.聚合物作为疏水性骨架通过功能性酯羰基与钙钛矿表面铅化学键合实现了表面铅位点的全覆盖, 有效阻止该位点被水分子占据, 形成的紧密界面层有效延缓水分子扩散到钙钛矿纳米晶中. 制备的薄膜表现出超高的浸水稳定性.

Notes

Acknowledgements

This work was supported by the Thousand Young Talents Program, and the National Natural Science Foundation of China (21422507, 21635002 and 21321003).

Supplementary material

40843_2017_9148_MOESM1_ESM.pdf (1.4 mb)
An Ultrastable Lead Halide Perovskite Nanocrystals Protected by Polymer

References

  1. 1.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647CrossRefGoogle Scholar
  3. 3.
    Yin X, Xu Z, Guo Y, et al. Ternary oxides in the TiO2-ZnO system as efficient electron-transport layers for perovskite solar cells with efficiency over 15%. ACS Appl Mater Interfaces, 2016, 8: 29580–29587CrossRefGoogle Scholar
  4. 4.
    Yin X, Guo Y, Xue Z, et al. Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res, 2015, 8: 1997–2003CrossRefGoogle Scholar
  5. 5.
    Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350: 1222–1225CrossRefGoogle Scholar
  6. 6.
    Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692CrossRefGoogle Scholar
  7. 7.
    Qin X, Dong H, Hu W. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci China Mater, 2015, 58: 186–191CrossRefGoogle Scholar
  8. 8.
    Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14: 636–642CrossRefGoogle Scholar
  9. 9.
    Dou L, Yang YM, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404CrossRefGoogle Scholar
  10. 10.
    Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414CrossRefGoogle Scholar
  11. 11.
    Leijtens T, Eperon GE, Noel NK, et al. Stability of metal halide perovskite solar cells. Adv Energy Mater, 2015, 5: 1500963CrossRefGoogle Scholar
  12. 12.
    Rong Y, Liu L, Mei A, et al. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater, 2015, 5: 1501066CrossRefGoogle Scholar
  13. 13.
    Berhe TA, Su WN, Chen CH, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323–356CrossRefGoogle Scholar
  14. 14.
    Wei J, Shi C, Zhao Y, et al. Potentials and challenges towards application of perovskite solar cells. Sci China Mater, 2016, 59: 769–778CrossRefGoogle Scholar
  15. 15.
    Mosconi E, Azpiroz JM, De Angelis F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem Mater, 2015, 27: 4885–4892CrossRefGoogle Scholar
  16. 16.
    Haruyama J, Sodeyama K, Han L, et al. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J Phys Chem Lett, 2014, 5: 2903–2909CrossRefGoogle Scholar
  17. 17.
    Li B, Fei C, Zheng K, et al. Constructing water-resistant CH3NH3-PbI3 perovskite films via coordination interaction. J Mater Chem A, 2016, 4: 17018–17024CrossRefGoogle Scholar
  18. 18.
    Li X, Ibrahim Dar M, Yi C, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat Chem, 2015, 7: 703–711CrossRefGoogle Scholar
  19. 19.
    Guarnera S, Abate A, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett, 2015, 6: 432–437CrossRefGoogle Scholar
  20. 20.
    Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5: 1500477CrossRefGoogle Scholar
  21. 21.
    Habisreutinger SN, Leijtens T, Eperon GE, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561–5568CrossRefGoogle Scholar
  22. 22.
    Huang S, Li Z, Kong L, et al. Enhancing the stability of CH3NH3-PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J Am Chem Soc, 2016, 138: 5749–5752CrossRefGoogle Scholar
  23. 23.
    Di D, Musselman KP, Li G, et al. Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix. J Phys Chem Lett, 2015, 6: 446–450CrossRefGoogle Scholar
  24. 24.
    Zhou Q, Bai Z, Lu WG, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv Mater, 2016, 28: 9163–9168CrossRefGoogle Scholar
  25. 25.
    Wang Y, He J, Chen H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv Mater, 2016, 28: 10710–10717CrossRefGoogle Scholar
  26. 26.
    Raja SN, Bekenstein Y, Koc MA, et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl Mater Interfaces, 2016, 8: 35523–35533CrossRefGoogle Scholar
  27. 27.
    Chen K, Schünemann S, Tüysüz H. Preparation of waterproof organometal halide perovskite photonic crystal beads. Angew Chem Int Ed, 2017, 56: 6548–6552CrossRefGoogle Scholar
  28. 28.
    Tannenbaum R, Zubris M, David K, et al. FTIR characterization of the reactive interface of cobalt oxide nanoparticles embedded in polymeric matrices. J Phys Chem B, 2006, 110: 2227–2232CrossRefGoogle Scholar
  29. 29.
    Huang H, Susha AS, Kershaw SV, et al. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv Sci, 2015, 2: 1500194CrossRefGoogle Scholar
  30. 30.
    Zhang F, Zhong H, Chen C, et al. Brightly luminescent and colortunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9: 4533–4542CrossRefGoogle Scholar
  31. 31.
    Tannenbaum R, King S, Lecy J, et al. Infrared study of the kinetics and mechanism of adsorption of acrylic polymers on alumina surfaces. Langmuir, 2004, 20: 4507–4514CrossRefGoogle Scholar
  32. 32.
    Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules, 2006, 39: 6565–6573CrossRefGoogle Scholar
  33. 33.
    Zhu F, Men L, Guo Y, et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano, 2015, 9: 2948–2959CrossRefGoogle Scholar
  34. 34.
    Konstadinidis K, Thakkar B, Chakraborty A, et al. Segment level chemistry and chain conformation in the reactive adsorption of poly(methyl methacrylate) on aluminum oxide surfaces. Langmuir, 1992, 8: 1307–1317CrossRefGoogle Scholar
  35. 35.
    Zeng R, Rong MZ, Zhang MQ, et al. Interfacial interaction in Ag/polymer nanocomposite films. J Mater Sci Lett, 2001, 20: 1473–1476CrossRefGoogle Scholar
  36. 36.
    Li X, Wu Y, Zhang S, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 2016, 26: 2435–2445CrossRefGoogle Scholar
  37. 37.
    de Quilettes DW, Vorpahl SM, Stranks SD, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348: 683–686CrossRefGoogle Scholar
  38. 38.
    Zheng K, Zhu Q, Abdellah M, et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J Phys Chem Lett, 2015, 6: 2969–2975CrossRefGoogle Scholar
  39. 39.
    Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B, 1992, 45: 8989–8994CrossRefGoogle Scholar
  40. 40.
    Dar MI, Jacopin G, Meloni S, et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci Adv, 2016, 2: e1601156CrossRefGoogle Scholar
  41. 41.
    Shobhana E. X-ray diffraction and UV-visible studies of PMMA thin films. Int J Modern Eng Res, 2012, 2: 1092–1095Google Scholar
  42. 42.
    N’Diaye M, Pascaretti-Grizon F, Massin P, et al. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy. Langmuir, 2012, 28: 11609–11614CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao Li (李晓)
    • 1
    • 2
  • Zhenjie Xue (薛振杰)
    • 2
  • Dan Luo (罗聃)
    • 2
  • Chuanhui Huang (黄川辉)
    • 2
  • Lizhi Liu (刘立志)
    • 2
  • Xuezhi Qiao (乔学志)
    • 2
  • Cong Liu (刘聪)
    • 2
  • Qian Song (宋倩)
    • 2
  • Cong Yan (闫聪)
    • 2
  • Yingchun Li (李迎春)
    • 1
  • Tie Wang (王铁)
    • 2
  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanChina
  2. 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations