Science China Materials

, Volume 60, Issue 11, pp 1079–1092 | Cite as

Collective motion of bacteria and their dynamic assembly behavior

  • Jingjing Feng (冯靖靖)
  • Yan He (何彦)


In recent years, active matter systems have attracted considerable attentions due to their complex dynamic behaviors in physical and material science. In particular, microorganism systems have served as model systems for observing dynamic assembly and collective motility of active particles and significant progresses have been made on in-depth understanding of how high density bacteria colony behaves in the non-equilibrium state. In this mini-review, we mainly focus on the collective motion of bacteria and their dynamic assembly from four aspects: (1) the general phenomenon and biological mechanism of bacterial collective motion; (2) the common experimental techniques for studying bacterial motility; (3) some active systems on exploring bacterial collective behavior, which include both non-restricted free suspensions and those in relative confined geometric space; (4) the phenomenological and descriptive statistical methods and physical models on the underlying laws that lead to large-scale coordinate patterns in multicellular systems. This review aims to give a general picture of the collective motion in bacterial active matter systems experimentally and theoretically in order to reflect the interplays between individuals among populations in motion. It is expected that the general regulation rules related to the boundary effects in the complex systems and materials can be elucidated to some extent.


active matter bacterial swarming collective behavior 



近年来由于活性物质体系表现出的复杂动态行为, 对活性物质的研究趋于热点. 细菌活性体系由于鞭毛驱动而产生的在非平衡状态下的特殊运动行为成为观察复杂体系整体动态组装及集群运动的较好的模型体系, 本综述主要从如下几个方面对细菌活性体系的动态组装行为进行了简要总结: (1)细菌集群行为的主要现象及生物学机制; (2)研究细菌集群行为的主要技术方法; (3)细菌动态集群行为的相关研究, 其中包括在相对非限制的空间体系和限制空间体系的研究; (4)在研究动态组装现象时的唯像描述方法以及一些简要的物理模型. 本文旨在呈现研究细菌动态集群组装行为的研究概貌, 以体现探究过程中所表现出的个体与群体组装行为的动态关联, 希望一窥复杂体系的整体在动态变化中的规律, 包括与周围环境的相互作用等.



This work was supported by the National Natural Science Foundation of China (21425519) and Tsinghua University Startup Fund.


  1. 1.
    Dombrowski C, Cisneros L, Chatkaew S, et al. Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett, 2004, 93: 098103CrossRefGoogle Scholar
  2. 2.
    Ben-Jacob E, Levine H. The artistry of nature. Nature, 2001, 409: 985–986CrossRefGoogle Scholar
  3. 3.
    Patteson AE, Gopinath A, Arratia PE. Active colloids in complex fluids. Curr Opin Colloid Interface Sci, 2016, 21: 86–96CrossRefGoogle Scholar
  4. 4.
    DeCamp SJ, Redner GS, Baskaran A, et al. Orientational order of motile defects in active nematics. Nat Mater, 2015, 14: 1110–1115CrossRefGoogle Scholar
  5. 5.
    Sanchez T, Welch D, Nicastro D, et al. Cilia-like beating of active microtubule bundles. Science, 2011, 333: 456–459CrossRefGoogle Scholar
  6. 6.
    Drescher K, Shen Y, Bassler BL, et al. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc Natl Acad Sci USA, 2013, 110: 4345–4350CrossRefGoogle Scholar
  7. 7.
    Chatterjee R, Joshi AA, Perlekar P. Front structure and dynamics in dense colonies ofmotile bacteria: role of active turbulence. Phys Rev E, 2016, 94: 022406CrossRefGoogle Scholar
  8. 8.
    Zhang HP, Be’er A, Florin EL, et al. Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA, 2010, 107: 13626–13630CrossRefGoogle Scholar
  9. 9.
    Zhou S, Sokolov A, Lavrentovich OD, et al. Living liquid crystals. Proc Natl Acad Sci USA, 2014, 111: 1265–1270CrossRefGoogle Scholar
  10. 10.
    Notbohm J, Banerjee S, Utuje KJC, et al. Cellular contraction and polarization drive collective cellular motion. Biophysical J, 2016, 110: 2729–2738CrossRefGoogle Scholar
  11. 11.
    Schuppler M, Keber FC, Kröger M, et al. Boundaries steer the contraction of active gels. Nat Commun, 2016, 7: 13120CrossRefGoogle Scholar
  12. 12.
    Be’er A, Harshey RM. Collective motion of surfactant-producing bacteria imparts superdiffusivity to their upper surface. Biophysical J, 2011, 101: 1017–1024CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Zhou N, Li N, et al. Giant volume change of active gels under continuous flow. J Am Chem Soc, 2014, 136: 7341–7347CrossRefGoogle Scholar
  14. 14.
    Ebbens SJ. Active colloids: Progress and challenges towards realising autonomous applications. Curr Opin Colloid Interface Sci, 2016, 21: 14–23CrossRefGoogle Scholar
  15. 15.
    Dey KK, Wong F, Altemose A, et al. Catalytic motors—quo vadimus? Curr Opin Colloid Interface Sci, 2016, 21: 4–13CrossRefGoogle Scholar
  16. 16.
    Bouffier L, Ravaine V, Sojic N, et al. Electric fields for generating unconventional motion of small objects. Curr Opin Colloid Interface Sci, 2016, 21: 57–64CrossRefGoogle Scholar
  17. 17.
    Qiu F, Nelson BJ. Magnetic helical micro- and nanorobots: toward their biomedical applications. Engineering, 2015, 1: 021–026CrossRefGoogle Scholar
  18. 18.
    Gao W, Uygun A, Wang J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc, 2012, 134: 897–900CrossRefGoogle Scholar
  19. 19.
    Scharf B. Real-time imaging of fluorescent flagellar filaments of rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J Bacteriology, 2002, 184: 5979–5986CrossRefGoogle Scholar
  20. 20.
    Goldstein RE. Green algae as model organisms for biological fluid dynamics. Annu Rev Fluid Mech, 2015, 47: 343–375CrossRefGoogle Scholar
  21. 21.
    Wang Y, Hernandez RM, Bartlett DJ, et al. Bipolar electrochemical mechanismfor the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir, 2006, 22: 10451–10456CrossRefGoogle Scholar
  22. 22.
    Manjare M, Yang B, Zhao YP. Bubble driven quasioscillatory translationalmotion of catalyticmicromotors. Phys Rev Lett, 2012, 109: 128305CrossRefGoogle Scholar
  23. 23.
    Kearns DB. A field guide to bacterial swarming motility. Nat Rev Micro, 2010, 8: 634–644CrossRefGoogle Scholar
  24. 24.
    Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003, 57: 249–273CrossRefGoogle Scholar
  25. 25.
    Copeland MF, Weibel DB. Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter, 2009, 5: 1174–1187CrossRefGoogle Scholar
  26. 26.
    Verstraeten N, Braeken K, Debkumari B, et al. Living on a surface: swarming and biofilm formation. TrendsMicrobiol, 2008, 16: 496–506Google Scholar
  27. 27.
    Koch DL, SubramanianG. Collective hydrodynamics of swimming microorganisms: living fluids. Annu Rev Fluid Mech, 2011, 43: 637–659CrossRefGoogle Scholar
  28. 28.
    Burdick J, Laocharoensuk R, Wheat PM, et al. Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J Am Chem Soc, 2008, 130: 8164–8165CrossRefGoogle Scholar
  29. 29.
    Saragosti J, Silberzan P, Buguin A. Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis. PLoS ONE, 2012, 7: e35412CrossRefGoogle Scholar
  30. 30.
    Butler MT, Wang Q, Harshey RM. Cell density andmobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA, 2010, 107: 3776–3781CrossRefGoogle Scholar
  31. 31.
    Elgeti J, Kaupp UB, Gompper G. Response to comment on article: hydrodynamics of sperm cells near surfaces. Biophysical J, 2011, 100: 2321–2324CrossRefGoogle Scholar
  32. 32.
    Gachelin J, Rousselet A, Lindner A, et al. Collective motion in an active suspension of Escherichia coli bacteria. New J Phys, 2014, 16: 025003CrossRefGoogle Scholar
  33. 33.
    De Magistris G, Marenduzzo D. An introduction to the physics of active matter. Physica A-Stat Mech Appl, 2015, 418: 65–77CrossRefGoogle Scholar
  34. 34.
    Clement E, Lindner A, Douarche C, et al. Bacterial suspensions under flow. Eur Phys J Spec Top, 2016, 225: 2389–2406CrossRefGoogle Scholar
  35. 35.
    Sokolov A, Aranson IS. Physical properties of collective motion in suspensions of bacteria. Phys Rev Lett, 2012, 109: 248109CrossRefGoogle Scholar
  36. 36.
    Peng Y, Lai L, Tai YS, et al. Diffusion of ellipsoids in bacterial suspensions. Phys Rev Lett, 2016, 116: 068303CrossRefGoogle Scholar
  37. 37.
    Darnton NC, Turner L, Rojevsky S, et al. Dynamics of bacterial swarming. Biophysical J, 2010, 98: 2082–2090CrossRefGoogle Scholar
  38. 38.
    Ryan SD, Ariel G, Be’er A. Anomalous fluctuations in the orientation and velocity of swarming bacteria. Biophysical J, 2016, 111: 247–255CrossRefGoogle Scholar
  39. 39.
    Lushi E, Wioland H, Goldstein RE. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc Natl Acad Sci USA, 2014, 111: 9733–9738CrossRefGoogle Scholar
  40. 40.
    Sokolov A, Aranson IS, Kessler JO, et al. Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett, 2007, 98: 158102CrossRefGoogle Scholar
  41. 41.
    Chen C, Liu S, Shi XQ, et al. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions. Nature, 2017, 542: 210–214CrossRefGoogle Scholar
  42. 42.
    Ariel G, Rabani A, Benisty S, et al. Swarming bacteria migrate by Lévy Walk. Nat Commun, 2015, 6: 8396CrossRefGoogle Scholar
  43. 43.
    Zhang HP, Be’er A, Smith RS, et al. Swarming dynamics in bacterial colonies. Europhys Lett, 2009, 87: 48011CrossRefGoogle Scholar
  44. 44.
    Leptos KC, Guasto JS, Gollub JP, et al. Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys Rev Lett, 2009, 103: 198103CrossRefGoogle Scholar
  45. 45.
    Patteson AE, Gopinath A, Purohit PK, et al. Particle diffusion in active fluids is non-monotonic in size. Soft Matter, 2016, 12: 2365–2372CrossRefGoogle Scholar
  46. 46.
    Vaccari L, Allan DB, Sharifi-Mood N, et al. Films of bacteria at interfaces: three stages of behaviour. Soft Matter, 2015, 11: 6062–6074CrossRefGoogle Scholar
  47. 47.
    Benisty S, Ben-Jacob E, Ariel G, et al. Antibiotic-induced anomalous statistics of collective bacterial swarming. Phys Rev Lett, 2015, 114: 018105CrossRefGoogle Scholar
  48. 48.
    Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 2005, 56: 845–857CrossRefGoogle Scholar
  49. 49.
    Eisenstecken T, Hu J, Winkler RG. Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study. Soft Matter, 2016, 12: 8316–8326CrossRefGoogle Scholar
  50. 50.
    Wioland H, Lushi E, Goldstein RE. Directed collective motion of bacteria under channel confinement. New J Phys, 2016, 18: 075002CrossRefGoogle Scholar
  51. 51.
    Wioland H, Woodhouse FG, Dunkel J, et al. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat Phys, 2016, 12: 341–345CrossRefGoogle Scholar
  52. 52.
    Pinçe E, Velu SKP, Callegari A, et al. Disorder-mediated crowd control in an active matter system. Nat Commun, 2016, 7: 10907CrossRefGoogle Scholar
  53. 53.
    Horn BKP, Schunck BG. Determining optical flow. Artif Intelligence, 1981, 17: 185–203CrossRefGoogle Scholar
  54. 54.
    Kitsunezaki S. Spatio-temporal patterns of bacteria caused by collective motion. Physica D-Nonlinear Phenomena, 2006, 216: 294–300CrossRefGoogle Scholar
  55. 55.
    Gyrya V, Aranson IS, Berlyand LV, et al. Amodel of hydrodynamic interaction between swimming bacteria. Bull Math Biol, 2010, 72: 148–183CrossRefGoogle Scholar
  56. 56.
    Ishikawa T, Simmonds MP, Pedley TJ. Hydrodynamic interaction of two swimmingmodelmicro-organisms. J FluidMech, 2006, 568: 119–160CrossRefGoogle Scholar
  57. 57.
    Aranson IS, Sokolov A, Kessler JO, et al. Model for dynamical coherence in thin films of self-propelled microorganisms. Phys Rev E, 2007, 75: 040901CrossRefGoogle Scholar
  58. 58.
    Ryan SD, Berlyand L, Haines BM, et al. A kinetic model for semidilute bacterial suspensions. Multiscale Model Simul, 2013, 11: 1176–1196CrossRefGoogle Scholar
  59. 59.
    Baskaran A, Marchetti MC. Statistical mechanics and hydrodynamics of bacterial suspensions. Proc Natl Acad Sci USA, 2009, 106: 15567–15572CrossRefGoogle Scholar
  60. 60.
    Shelley M, Saintillan D. Instabilities and dynamics in suspensions of self-locomoting rods. Salt Lake City: the 60th Annual Meeting of the Divison of Fluid Dynamics. New York: American Physical Society,2007, 006Google Scholar
  61. 61.
    Marchetti MC, Fily Y, Henkes S, et al. Minimalmodel of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr Opin Colloid Interface Sci, 2016, 21: 34–43CrossRefGoogle Scholar
  62. 62.
    Simha RA, Ramaswamy S. Statistical hydrodynamics of ordered suspensions of self-propelled particles: waves, giant number fluctuations and instabilities. Physica A-Stat Mech Appl, 2002, 306: 262–269CrossRefGoogle Scholar
  63. 63.
    Wolgemuth CW. Collective swimming and the dynamics of bacterial turbulence. Biophysical J, 2008, 95: 1564–1574CrossRefGoogle Scholar
  64. 64.
    Dunkel J, Heidenreich S, Drescher K, et al. Fluid dynamics of bacterial turbulence. Phys Rev Lett, 2013, 110: 228102CrossRefGoogle Scholar
  65. 65.
    Damos P. Using multivariate cross correlations, Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations. BMC Ecol, 2016, 16: 33CrossRefGoogle Scholar
  66. 66.
    Xiong B, Zhou R, Hao J, et al. Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles. Nat Commun, 2013, 4: 1708CrossRefGoogle Scholar
  67. 67.
    Xiao L, Qiao Y, He Y, et al. Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy. J Am Chem Soc, 2011, 133: 10638–10645CrossRefGoogle Scholar
  68. 68.
    Xiao L, Wei L, Cheng X, et al. Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells. Anal Chem, 2011, 83: 7340–7347CrossRefGoogle Scholar
  69. 69.
    Peng Y, Xiong B, Peng L, et al. Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem, 2015, 87: 200–215CrossRefGoogle Scholar
  70. 70.
    Hao J, Xiong B, Cheng XD, et al. High-throughput sulfide sensing with colorimetric analysis of single Au–Ag core–shell nanoparticles. Anal Chem, 2014, 86: 4663–4667CrossRefGoogle Scholar
  71. 71.
    Cheng X, Dai D, Xu D, et al. Subdiffraction-limited plasmonic imaging with anisotropic metal nanoparticles. Anal Chem, 2014, 86: 2303–2307CrossRefGoogle Scholar
  72. 72.
    Peyer KE, Zhang L, Nelson BJ. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5: 1259–1272CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations