Science China Materials

, Volume 60, Issue 11, pp 1063–1078 | Cite as

Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications

Reviews

Abstract

As a new generation of solution-processable optoelectronic materials, organic-inorganic hybrid halide perovskites have attracted a great deal of interest due to their high and balanced carrier mobility, long carrier diffusion length and large light absorption coefficient. These materials have demonstrated wide applications in solar cell, light-emitting diode, laser, photodetector, catalysis and other fields. Comparing with their polycrystalline film counterpart, perovskite single crystals have low trap density and no grain boundaries and thus are anticipated to possess much better optoelectronic performances. Herein, we review the key progress in the development of organic-inorganic halide perovskite single crystals. Particularly, the crystal growth techniques and applications of these advanced materials are highlighted.

Keywords

organic-inorganic hybrid halide perovskite single crystal 

有机-无机杂化钙钛矿单晶研究进展: 生长技术及应用

摘要

作为一种新型的光电材料, 有机-无机杂化钙钛矿以其高光吸收系数、 长扩散长度、 高载流子迁移率等优点为人们所关注. 这类材料在太阳电池、 光电探测器、 发光二极管、 激光器、 催化等诸多领域有极为优秀的表现. 与多晶材料相比, 单晶的低缺陷、 无晶界等特点使其拥有更好的性能. 本文从生长技术和应用两个方面综述了有机-无机杂化钙钛矿单晶的研究进展, 并对该领域的未来发展进行了展望.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91333109 and 21671115); Tsinghua University Initiative Scientific Research Program (20131089202 and 20161080165) and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201516) are also acknowledged for partial financial support.

References

  1. 1.
    Møller CK. A phase transition in cæsium plumbochloride. Nature, 1957, 180: 981–982CrossRefGoogle Scholar
  2. 2.
    Møller CK. Crystal structure and photoconductivity of cæsium plumbohalides. Nature, 1958, 182: 1436–1436CrossRefGoogle Scholar
  3. 3.
    Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  4. 4.
    Noh JH, Im SH, Heo JH, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764–1769CrossRefGoogle Scholar
  5. 5.
    Zheng K, Zhu Q, Abdellah M, et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J Phys Chem Lett, 2015, 6: 2969–2975CrossRefGoogle Scholar
  6. 6.
    Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  7. 7.
    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  8. 8.
    Leijtens T, Stranks SD, Eperon GE, et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano, 2014, 8: 7147–7155CrossRefGoogle Scholar
  9. 9.
    Chen Y, Peng J, Su D, et al. Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7: 4471–4475CrossRefGoogle Scholar
  10. 10.
    Wehrenfennig C, Eperon GE, Johnston MB, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater, 2014, 26: 1584–1589CrossRefGoogle Scholar
  11. 11.
    Niu G, Li W, Li J, et al. Progress of interface engineering in perovskite solar cells. Sci China Mater, 2016, 59: 728–742CrossRefGoogle Scholar
  12. 12.
    Wei J, Shi C, Zhao Y, et al. Potentials and challenges towards application of perovskite solar cells. Sci China Mater, 2016, 59: 769–778CrossRefGoogle Scholar
  13. 13.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  14. 14.
    http://www.nrel.gov/ncpv/images/efficiency_chart.jpgGoogle Scholar
  15. 15.
    Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692CrossRefGoogle Scholar
  16. 16.
    Xing G, Mathews N, Lim SS, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480CrossRefGoogle Scholar
  17. 17.
    Guo Y, Liu C, Tanaka H, et al. Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light. J Phys Chem Lett, 2015, 6: 535–539CrossRefGoogle Scholar
  18. 18.
    Da P, Cha M, Sun L, et al. High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett, 2015, 15: 3452–3457CrossRefGoogle Scholar
  19. 19.
    He Y, Galli G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem Mater, 2014, 26: 5394–5400CrossRefGoogle Scholar
  20. 20.
    Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett, 2013, 4: 3623–3630CrossRefGoogle Scholar
  21. 21.
    Baeg KJ, Binda M, Natali D, et al. Organic light detectors: photodiodes and phototransistors. Adv Mater, 2013, 25: 4267–4295CrossRefGoogle Scholar
  22. 22.
    Park NG. Perovskite solar cells: an emerging photovoltaic technology. Mater Today, 2015, 18: 65–72CrossRefGoogle Scholar
  23. 23.
    Kazim S, Nazeeruddin MK, Grätzel M, et al. Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed, 2014, 53: 2812–2824CrossRefGoogle Scholar
  24. 24.
    Boix PP, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today, 2014, 17: 16–23CrossRefGoogle Scholar
  25. 25.
    Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514CrossRefGoogle Scholar
  26. 26.
    Sum TC, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energ Environ Sci, 2014, 7: 2518–2534CrossRefGoogle Scholar
  27. 27.
    Kim HS, Im SH, Park NG. Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C, 2014, 118: 5615–5625CrossRefGoogle Scholar
  28. 28.
    Jung HS, Park NG. Perovskite solar cells: frommaterials to devices. Small, 2015, 11: 10–25CrossRefGoogle Scholar
  29. 29.
    Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10: 391–402CrossRefGoogle Scholar
  30. 30.
    Fan R, Huang Y, Wang L, et al. The progress of interface design in perovskite-based solar cells. Adv Energ Mater, 2016, 6: 1600460CrossRefGoogle Scholar
  31. 31.
    Veldhuis SA, Boix PP, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 2016, 28: 6804–6834CrossRefGoogle Scholar
  32. 32.
    Tong X, Lin F, Wu J, et al. High performance perovskite solar cells. Adv Sci, 2016, 3: 1500201CrossRefGoogle Scholar
  33. 33.
    Chen Y, He M, Peng J, et al. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: from polycrystalline films to single crystals. Adv Sci, 2016, 3: 1500392CrossRefGoogle Scholar
  34. 34.
    Correa-Baena JP, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells. Energ Environ Sci, 2017, 10: 710–727CrossRefGoogle Scholar
  35. 35.
    Wang Z, Shi Z, Li T, et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew Chem Int Ed, 2017, 56: 1190–1212CrossRefGoogle Scholar
  36. 36.
    Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347: 519–522CrossRefGoogle Scholar
  37. 37.
    Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 m in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967–970CrossRefGoogle Scholar
  38. 38.
    Weber D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur /CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z für Naturforschung B, 1978, 33Google Scholar
  39. 39.
    Weber D. CH3NH3SnBrxI3-x (x = 0–3), ein Sn(II)-system mit kubischer perowskitstruktur/CH3NH3SnBrxI3-x(x = 0–3), a Sn(II)-system with cubic perovskite structure. Z für Naturforschung B, 1978, 33Google Scholar
  40. 40.
    Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019–9038CrossRefGoogle Scholar
  41. 41.
    Baikie T, Fang Y, Kadro JM, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1: 5628CrossRefGoogle Scholar
  42. 42.
    Dang Y, Liu Y, Sun Y, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. Cryst Eng Comm, 2015, 17: 665–670CrossRefGoogle Scholar
  43. 43.
    Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys, 1987, 87: 6373–6378CrossRefGoogle Scholar
  44. 44.
    Lian Z, Yan Q, Lv Q, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci Rep, 2015, 5: 16563CrossRefGoogle Scholar
  45. 45.
    Fang Y, Dong Q, Shao Y, et al. Highly narrowband perovskite single- crystal photodetectors enabled by surface-charge recombination. Nat Photon, 2015, 9: 679–686CrossRefGoogle Scholar
  46. 46.
    Su J, Chen DP, Lin CT. Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution. J Cryst Growth, 2015, 422: 75–79CrossRefGoogle Scholar
  47. 47.
    Dang Y, Zhou Y, Liu X, et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew Chem, 2016, 128: 3508–3511CrossRefGoogle Scholar
  48. 48.
    Dang Y, Zhong C, Zhang G, et al. Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH(CH3)3SnX3 (X = Cl, Br). Chem Mater, 2016, 28: 6968–6974CrossRefGoogle Scholar
  49. 49.
    Lian Z, Yan Q, Gao T, et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J Am Chem Soc, 2016, 138: 9409–9412CrossRefGoogle Scholar
  50. 50.
    Saidaminov MI, Abdelhady AL, Murali B, et al. High-quality bulk hybrid perovskite single crystals withinminutes by inverse temperature crystallization. Nat Commun, 2015, 6: 7586–7592CrossRefGoogle Scholar
  51. 51.
    Saidaminov MI, Abdelhady AL, Maculan G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem Commun, 2015, 51: 17658–17661CrossRefGoogle Scholar
  52. 52.
    Maculan G, Sheikh AD, Abdelhady AL, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett, 2015, 6: 3781–3786CrossRefGoogle Scholar
  53. 53.
    Zhumekenov AA, Saidaminov MI, Haque MA, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energ Lett, 2016, 1: 32–37CrossRefGoogle Scholar
  54. 54.
    Abdelhady AL, Saidaminov MI, Murali B, et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J Phys Chem Lett, 2016, 7: 295–301CrossRefGoogle Scholar
  55. 55.
    Han Q, Bae SH, Sun P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv Mater, 2016, 28: 2253–2258CrossRefGoogle Scholar
  56. 56.
    Kadro JM, Nonomura K, Gachet D, et al. Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Sci Rep, 2015, 5: 11654CrossRefGoogle Scholar
  57. 57.
    Zhang T, Yang M, Benson EE, et al. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1−xClx)3. Chem Commun, 2015, 51: 7820–7823CrossRefGoogle Scholar
  58. 58.
    Liu Y, Yang Z, Cui D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv Mater, 2015, 27: 5176–5183CrossRefGoogle Scholar
  59. 59.
    Liu Y, Sun J, Yang Z, et al. 20-mm-Large single-crystalline formamidinium- perovskite wafer for mass production of integrated photodetectors. Adv Optical Mater, 2016, 4: 1829–1837CrossRefGoogle Scholar
  60. 60.
    Zhang Y, Liu Y, Li Y, et al. Perovskite CH3NH3Pb(BrxI{1−itx})3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. J Mater Chem C, 2016, 4: 9172–9178CrossRefGoogle Scholar
  61. 61.
    Dirin DN, Cherniukh I, Yakunin S, et al. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem Mater, 2016, 28: 8470–8474CrossRefGoogle Scholar
  62. 62.
    Rakita Y, Kedem N, Gupta S, et al. Low-temperature solutiongrown CsPbBr3 single crystals and their characterization. Cryst Growth Des, 2016, 16: 5717–5725CrossRefGoogle Scholar
  63. 63.
    Yang Y, Yan Y, Yang M, et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat Commun, 2015, 6: 7961–7967CrossRefGoogle Scholar
  64. 64.
    Zhou H, Nie Z, Yin J, et al. Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH3NH3PbI3 single crystals for photovoltaic applications. RSC Adv, 2015, 5: 85344–85349CrossRefGoogle Scholar
  65. 65.
    Kobayashi M, Omata K, Sugimoto S, et al. Scintillation characteristics of CsPbCl3 single crystals. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2008, 592: 369–373CrossRefGoogle Scholar
  66. 66.
    Stoumpos CC, Malliakas CD, Peters JA, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des, 2013, 13: 2722–2727CrossRefGoogle Scholar
  67. 67.
    Peng W, Wang L, Murali B, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv Mater, 2016, 28: 3383–3390CrossRefGoogle Scholar
  68. 68.
    Liu Y, Zhang Y, Yang Z, et al. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv Mater, 2016, 28: 9204–9209CrossRefGoogle Scholar
  69. 69.
    Chen YX, Ge QQ, Shi Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J Am Chem Soc, 2016, 138: 16196–16199CrossRefGoogle Scholar
  70. 70.
    Rao HS, Li WG, Chen BX, et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrow-band-photodetectors. Adv Mater, 2017, 29: 1602639CrossRefGoogle Scholar
  71. 71.
    Zhao P, Xu J, Dong X, et al. Large-size CH3NH3PbBr3 single crystal: growth and in situ characterization of the photophysics properties. J Phys Chem Lett, 2015, 6: 2622–2628CrossRefGoogle Scholar
  72. 72.
    Fang HH, Raissa R, Abdu-Aguye M, et al. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv Funct Mater, 2015, 25: 2378–2385CrossRefGoogle Scholar
  73. 73.
    Yang D, Xie C, Sun J, et al. Amplified spontaneous emission from organic-inorganic hybrid lead iodide perovskite single crystals under direct multiphoton excitation. Adv Optical Mater, 2016, 4: 1053–1059CrossRefGoogle Scholar
  74. 74.
    Valverde-Chávez DA, Ponseca CS, Stoumpos CC, et al. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energ Environ Sci, 2015, 8: 3700–3707CrossRefGoogle Scholar
  75. 75.
    Fang Y, Wei H, Dong Q, et al. Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat Commun, 2017, 8: 14417CrossRefGoogle Scholar
  76. 76.
    Lv Q, He W, Lian Z, et al. Anisotropic moisture erosion of CH3NH3PbI3 single crystals. Cryst Eng Comm, 2017, 19: 901–904CrossRefGoogle Scholar
  77. 77.
    Grattan KTV, Sun T. Fiber optic sensor technology: an overview. Sensors Actuators A-Phys, 2000, 82: 40–61CrossRefGoogle Scholar
  78. 78.
    Ghezzi D, Antognazza MR, Dal Maschio M, et al. A hybrid bioorganic interface for neuronal photoactivation. Nat Commun, 2011, 2: 166–173CrossRefGoogle Scholar
  79. 79.
    Razeghi M, Rogalski A. Semiconductor ultraviolet detectors. J Appl Phys, 1996, 79: 7433–7473CrossRefGoogle Scholar
  80. 80.
    Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet–visible–near infrared photodetectors. ACS Nano, 2014, 8: 787–796CrossRefGoogle Scholar
  81. 81.
    Fang H, Li Q, Ding J, et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. J Mater Chem C, 2016, 4: 630–636CrossRefGoogle Scholar
  82. 82.
    Ding J, Fang H, Lian Z, et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. Cryst Eng Comm, 2016, 18: 4405–4411CrossRefGoogle Scholar
  83. 83.
    Shaikh PA, Shi D, Retamal JRD, et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. J Mater Chem C, 2016, 4: 8304–8312CrossRefGoogle Scholar
  84. 84.
    Cao M, Tian J, Cai Z, et al. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl Phys Lett, 2016, 109: 233303CrossRefGoogle Scholar
  85. 85.
    Dong Q, Song J, Fang Y, et al. Lateral-structure single-crystal hybrid perovskite solar cells via piezoelectric poling. Adv Mater, 2016, 28: 2816–2821CrossRefGoogle Scholar
  86. 86.
    Kasap S, Frey JB, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors, 2011, 11: 5112–5157CrossRefGoogle Scholar
  87. 87.
    Yaffe MJ, Rowlands JA. X-ray detectors for digital radiography. Phys Med Biol, 1997, 42: 1–39CrossRefGoogle Scholar
  88. 88.
    Tegze M, Faigel G. X-ray holography with atomic resolution. Nature, 1996, 380: 49–51CrossRefGoogle Scholar
  89. 89.
    Evans RD, Noyau A. The Atomic Nucleus. Summit: McGraw-Hill, 1955, 582Google Scholar
  90. 90.
    Heiss W, Brabec C. X-ray imaging: perovskites target X-ray detection. Nat Photon, 2016, 10: 288–289CrossRefGoogle Scholar
  91. 91.
    Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photon, 2015, 9: 444–449CrossRefGoogle Scholar
  92. 92.
    Náfrádi B, Náfrádi G, Forró L, et al. Methylammonium lead iodide for efficient X-ray energy conversion. J Phys Chem C, 2015, 119: 25204–25208CrossRefGoogle Scholar
  93. 93.
    Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photon, 2016, 10: 333–339CrossRefGoogle Scholar
  94. 94.
    Yakunin S, Dirin DN, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photon, 2016, 10: 585–589CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations