Science China Materials

, Volume 60, Issue 11, pp 1121–1128 | Cite as

Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction

  • Hongchao Yang (杨红超)
  • Changhong Wang (汪昌红)
  • Feng Hu (胡峰)
  • Yejun Zhang (张叶俊)
  • Huan Lu (卢欢)
  • Qiangbin Wang (王强斌)


The synthesis of atomic-scale metal catalysts is a promising but very challenging project. In this work, we successfully fabricated a hybrid catalyst of Ptc/Ni(OH)2 with atomic-scale Pt clusters uniformly decorated on porous Ni(OH)2 nanowires (NWs) via a facile room-temperature synthesis strategy. The as-obtained Ptc/Ni(OH)2 catalyst exhibits highly efficient hydrogen evolution reaction (HER) performance under basic conditions. In 0.1 mol L−1 KOH, the Ptc/Ni(OH)2 has an onset overpotential of ~0 mV vs. RHE, and a significantly low overpotential of 32 mV at a current density of 10 mA cm−2, lower than that of the commercial 20% Pt/C (58 mV). The mass current density data illustrated that the Ptc/Ni(OH)2 reached a high current density of 6.34 Amg Pt −1 at an overpotential of 50 mV, which was approximately 28 times higher than that of the commercial Pt/C (0.223 A mg Pt −1 ) at the same overpotential, proving the high-efficiency electrocatalytic activity of the as-obtained Ptc/Ni(OH)2 for HER under alkaline conditions.


atomic-scale platinum Ni(OH)2 clusters hydrogen evolution reaction 



合成原子级别的催化剂是一项颇具前景但又充满挑战的课题. 本文通过简单的室温反应成功制备了一种原子级别的Pt团簇修饰 的多孔α相氢氧化镍纳米线(Ptc/Ni(OH)2)复合材料. 所得到的Ptc/Ni(OH)2在碱性环境下表现出高效的电催化析氢反应性能. 在氢气饱和 的0.1 mol L−1氢氧化钾溶液中, Ptc/Ni(OH)2的起始过电势很小, 接近于0, 当电流密度为10 mA cm−2时, 其过电势低至32 mV. 此过电位低于同等 条件下商业化20% Pt/C的过电势(58 mV). 通过质量电流密度数据显示, 在过电势为50 mV时, Ptc/Ni(OH)2的质量电流密度高达6.34 A mg, Pt 1 在 同样的过电势条件下, 这一电流是商业化Pt/C (0.223 A mg ) Pt 1 的28倍, 表明我们所制得的Ptc/Ni(OH)2在碱性环境下具有高效的电催化析氢反 应性能.



The authors thank the financial support from the National Natural Science Foundation of China (21425103, 21673280 and 11374039).

Supplementary material

40843_2017_9035_MOESM1_ESM.pdf (2.6 mb)
Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction


  1. 1.
    Turner JA. Sustainable hydrogen production. Science, 2004, 305: 972–974CrossRefGoogle Scholar
  2. 2.
    Yang H, Zhang Y, Hu F, et al. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett, 2015, 15: 7616–7620CrossRefGoogle Scholar
  3. 3.
    Blakemore JD, Crabtree RH, Brudvig GW. Molecular catalysts for water oxidation. Chem Rev, 2015, 115: 12974–13005CrossRefGoogle Scholar
  4. 4.
    Esswein AJ, McMurdo MJ, Ross PN, et al. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C, 2009, 113: 15068–15072CrossRefGoogle Scholar
  5. 5.
    Jin H, Wang J, Su D, et al. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc, 2015, 137: 2688–2694CrossRefGoogle Scholar
  6. 6.
    Luo J, Im JH, Mayer MT, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345: 1593–1596CrossRefGoogle Scholar
  7. 7.
    Lu Q, Hutchings GS, Yu W, et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun, 2015, 6: 6567CrossRefGoogle Scholar
  8. 8.
    McKone JR, Sadtler BF, Werlang CA, et al. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal, 2013, 3: 166–169CrossRefGoogle Scholar
  9. 9.
    Raj IA, Vasu KI. Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem, 1990, 20: 32–38CrossRefGoogle Scholar
  10. 10.
    Crnkovic F. Electrochemical and morphological studies of electrodeposited Ni–Fe–Mo–Zn alloys tailored for water electrolysis. Int J Hydrogen Energ, 2004, 29: 249–254CrossRefGoogle Scholar
  11. 11.
    Xu YF, Gao MR, Zheng YR, et al. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew Chem Int Ed, 2013, 52: 8546–8550CrossRefGoogle Scholar
  12. 12.
    Gong M, Zhou W, Tsai MC, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun, 2014, 5: 4695CrossRefGoogle Scholar
  13. 13.
    Fei H, Yang Y, Peng Z, et al. Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction. ACS Appl Mater Interfaces, 2015, 7: 8083–8087CrossRefGoogle Scholar
  14. 14.
    Yan X, Tian L, He M, et al. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett, 2015, 15: 6015–6021CrossRefGoogle Scholar
  15. 15.
    Weng Z, LiuW, Yin LC, et al. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett, 2015, 15: 7704–7710CrossRefGoogle Scholar
  16. 16.
    Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352: 797–800CrossRefGoogle Scholar
  17. 17.
    Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748CrossRefGoogle Scholar
  18. 18.
    Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc, 2015, 137: 10484–10487CrossRefGoogle Scholar
  19. 19.
    Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc, 2013, 135: 15314–15317CrossRefGoogle Scholar
  20. 20.
    Fei H, Dong J, Arellano-Jiménez MJ, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun, 2015, 6: 8668CrossRefGoogle Scholar
  21. 21.
    Yin H, Zhao S, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430CrossRefGoogle Scholar
  22. 22.
    Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334: 1256–1260CrossRefGoogle Scholar
  23. 23.
    Subbaraman R, Tripkovic D, Chang KC, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater, 2012, 11: 550–557CrossRefGoogle Scholar
  24. 24.
    Gao M, Sheng W, Zhuang Z, et al. Efficient water oxidation using nanostructured a-nickel-hydroxide as an electrocatalyst. J Am Chem Soc, 2014, 136: 7077–7084CrossRefGoogle Scholar
  25. 25.
    Rajamathi M, Vishnu Kamath P. On the relationship between a-nickel hydroxide and the basic salts of nickel. J Power Sources, 1998, 70: 118–121CrossRefGoogle Scholar
  26. 26.
    Dong X, Guo Z, Song Y, et al. Flexible and wire-shaped micro-supercapacitor based onNi(OH)2-nanowire and orderedmesoporous carbon electrodes. Adv Funct Mater, 2014, 24: 3405–3412CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hongchao Yang (杨红超)
    • 1
    • 2
  • Changhong Wang (汪昌红)
    • 1
    • 2
  • Feng Hu (胡峰)
    • 2
  • Yejun Zhang (张叶俊)
    • 2
  • Huan Lu (卢欢)
    • 2
  • Qiangbin Wang (王强斌)
    • 1
    • 2
    • 3
  1. 1.School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaSuzhouChina
  2. 2.Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  3. 3.College of Materials Sciences and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations