Science China Materials

, Volume 60, Issue 11, pp 1093–1101 | Cite as

Recent progress on intramolecular charge-transfer compounds as photoelectric active materials

  • Xu Liang (许良)
  • Qichun Zhang (张其春)


This article summarized the recent advance on the structural design and synthetic strategies of intramolecular charge-transfer compounds as well as their potential applications in two-photon absorption chromophores, organic photovoltaics and organic light-emitting diodes.


structural design intramolecular charge-transfer photoelectric properties 



本文综述了分子内电荷转移化合物的结构设计和合成策略, 及其在双光子吸收材料、有机光伏器件和有机发光二极管等领域的应用进展.



This work was supported by AcRF Tier 1 (RG 8/16, RG 133/14 and RG 13/15) from MOE, Singapore, STU Scientific Research Foundation for Talents (NTF15005), STU Youth Research Fund (YR15001) and the Foundation for Young Talents in Higher Education of Guangdong (2015KQNCX042).


  1. 1.
    Li C, Li M, Li Y, et al. Newanisopleural spindle-like nonlinear optic (NLO) chromophores with a D-D′-π-A′-A or D-A′-π-D′-A structure: interesting optical behavior and DFT calculation results. J Mater Chem C, 2016, 4: 8392–8398CrossRefGoogle Scholar
  2. 2.
    Bredas JL, Durrant JR. Organic photovoltaics. AccChem Res, 2009, 42: 1689–1690CrossRefGoogle Scholar
  3. 3.
    Wang C, Okabe T, Long G, et al. A novel D–π–A small molecule with N-heteroacene as acceptor moiety for photovoltaic application. Dyes Pigments, 2015, 122: 231–237CrossRefGoogle Scholar
  4. 4.
    Lin Y, Li Y, Zhan X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev, 2012, 41: 4245–4272CrossRefGoogle Scholar
  5. 5.
    Liu F, Zhou Z, Zhang C, et al. A thieno[3,4-b]thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J Am Chem Soc, 2016, 138: 15523–15526CrossRefGoogle Scholar
  6. 6.
    Yang Y, Zhang ZG, Bin H, et al. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11. 77% high efficiency polymer solar cells. J Am Chem Soc, 2016, 138: 15011–15018CrossRefGoogle Scholar
  7. 7.
    Wang JL, Liu KK, Yan J, et al. Series of multifluorine substituted oligomers for organic solar cells with efficiency over 9% and fill factor of 0. 77 by combination thermal and solvent vapor annealing. J Am Chem Soc, 2016, 138: 7687–7697CrossRefGoogle Scholar
  8. 8.
    Lin Y, Zhao F, He Q, et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc, 2016, 138: 4955–4961CrossRefGoogle Scholar
  9. 9.
    Xie G, Chen D, Li X, et al. Polarity-tunable host materials and their applications in thermally activated delayed fluorescence organic light-emitting diodes. ACS Appl Mater Interfaces, 2016, 8: 27920–27930CrossRefGoogle Scholar
  10. 10.
    Wang C, Yamashita M, Hu B, et al. Synthesis, characterization, andmemory performance of two phenazine/triphenylamine-based organic small molecules through donor-acceptor design. Asian J Org Chem, 2015, 4: 646–651CrossRefGoogle Scholar
  11. 11.
    Wang C, Hu B, Wang J, et al. Rewritablemultilevelmemory performance of a tetraazatetracene donor-acceptor derivative with good endurance. Chem Asian J, 2015, 10: 116–119CrossRefGoogle Scholar
  12. 12.
    Wang C, Gu P, Hu B, et al. Recent progress in organic resistance memory with small molecules and inorganic–organic hybrid polymers as active elements. J Mater Chem C, 2015, 3: 10055–10065CrossRefGoogle Scholar
  13. 13.
    Wang C, Wang J, Li PZ, et al. Synthesis, characterization, and non-volatile memory device application of an N-substituted heteroacene. Chem Asian J, 2014, 9: 779–783CrossRefGoogle Scholar
  14. 14.
    Li G, Zheng K, Wang C, et al. Synthesis and nonvolatile memory behaviors of dioxatetraazapentacene derivatives. ACS Appl Mater Interfaces, 2013, 5: 6458–6462CrossRefGoogle Scholar
  15. 15.
    Li J, Zhang Q. Linearly fused azaacenes: novel approaches and new applications beyond field-effect transistors (FETs). ACS Appl Mater Interfaces, 2015, 7: 28049–28062CrossRefGoogle Scholar
  16. 16.
    Gu PY, Zhang J, Long G, et al. Solution-processable thiadiazoloquinoxaline- based donor–acceptor small molecules for thin-film transistors. J Mater Chem C, 2016, 4: 3809–3814CrossRefGoogle Scholar
  17. 17.
    Yang Y, Wang H, Liu F, et al. The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Phys Chem Chem Phys, 2015, 17: 5776–5784CrossRefGoogle Scholar
  18. 18.
    Aydemir M, Haykır G, Türksoy F, et al. Synthesis and investigation of intra-molecular charge transfer state properties of novel donor–acceptor–donor pyridine derivatives: the effects of temperature and environment on molecular configurations and the origin of delayed fluorescence. Phys Chem Chem Phys, 2015, 17: 25572–25582CrossRefGoogle Scholar
  19. 19.
    Li Y, Liu T, Liu H, et al. Self-assembly of intramolecular chargetransfer compounds into functional molecular systems. Acc Chem Res, 2014, 47: 1186–1198CrossRefGoogle Scholar
  20. 20.
    Weigel W, Rettig W, Dekhtyar M, et al. Dual fluorescence of phenyl and biphenyl substituted pyrene derivatives. J Phys Chem A, 2003, 107: 5941–5947CrossRefGoogle Scholar
  21. 21.
    Siemiarczuk A, Grabowski ZR, Krówczyński A, et al. Two emitting states of excited p-(9-anthryl)-n,n-dimethylaniline derivatives in polar solvents. Chem Phys Lett, 1977, 51: 315–320CrossRefGoogle Scholar
  22. 22.
    Grabowski ZR, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev, 2003, 103: 3899–4032CrossRefGoogle Scholar
  23. 23.
    Zachariasse KA. Comment on “Pseudo-Jahn–Teller and TICT-models: a photophysical comparison of meta-and para-DMABN derivatives” [Chem. Phys. Lett. 305 (1999) 8]. Chem Phys Lett, 2000, 320: 8–13CrossRefGoogle Scholar
  24. 24.
    Grozema FC, Swart M, Zijlstra RWJ, et al. QM/MM study of the role of the solvent in the formation of the charge separated excited state in 9, 9’-bianthryl. J Am Chem Soc, 2005, 127: 11019–11028CrossRefGoogle Scholar
  25. 25.
    Balamurugan D, Aquino AJA, de Dios F, et al. Multiscale simulation of the ground and photo-induced charge-separated states of a molecular triad in polar organic solvent: exploring the conformations, fluctuations, and free energy landscapes. J Phys Chem B, 2013, 117: 12065–12075CrossRefGoogle Scholar
  26. 26.
    Moreno-Yruela C, Garín J, Orduna J, et al. D−π–A compounds with tunable intramolecular charge transfer achieved by incorporation of butenolide nitriles as acceptor moieties. J Org Chem, 2015, 80: 12115–12128CrossRefGoogle Scholar
  27. 27.
    Maus M, Rettig W, Bonafoux D, et al. Photoinduced intramolecular charge transfer in a series of differently twisted donor−acceptor biphenyls as revealed by fluorescence. J Phys Chem A, 1999, 103: 3388–3401CrossRefGoogle Scholar
  28. 28.
    Maus M, Rettig W. The excited state equilibrium between two rotational conformers of a sterically restricted donor−acceptor biphenyl as characterized by global fluorescence decay analysis. J Phys Chem A, 2002, 106: 2104–2111CrossRefGoogle Scholar
  29. 29.
    Felouat A, D’Aléo A, Charaf-Eddin A, et al. Tuning the direction of intramolecular charge transfer and the nature of the fluorescent state in a T-shaped molecular dyad. J Phys Chem A, 2015, 119: 6283–6295CrossRefGoogle Scholar
  30. 30.
    Novakova V, Hladík P, Filandrová T, et al. Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyrazines. Phys Chem Chem Phys, 2014, 16: 5440–5446CrossRefGoogle Scholar
  31. 31.
    Mishra R, Lim JM, Son M, et al. Tuning the electronic nature of mono-bay alkynyl-phenyl-substituted perylene bisimides: synthesis, structure, and photophysical properties. Chem Eur J, 2014, 20: 5776–5786CrossRefGoogle Scholar
  32. 32.
    Serevičius T, Adomėnas P, Adomėnienė O, et al. Impact of nonsymmetric 2,9,10-aryl substitution on charge transport and optical properties of anthracene derivatives. Dyes Pigments, 2015, 122: 147–159CrossRefGoogle Scholar
  33. 33.
    Feng X, Tomiyasu H, Hu JY, et al. Regioselective substitution at the 1,3- and 6,8-positions of pyrene for the construction of small dipolar molecules. J Org Chem, 2015, 80: 10973–10978CrossRefGoogle Scholar
  34. 34.
    Inouchi T, Nakashima T, Kawai T. Charge transfer emission of T-shaped π-conjugated molecules: impact of quinoid character on the excited state properties. J Phys Chem A, 2014, 118: 2591–2598CrossRefGoogle Scholar
  35. 35.
    Pawlicki M, Collins HA, Denning RG, et al. Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed, 2009, 48: 3244–3266CrossRefGoogle Scholar
  36. 36.
    Albota M, Beljonne D, Bredas JL, et al. Design of organicmolecules with large two-photon absorption cross sections. Science, 1998, 281: 1653–1656CrossRefGoogle Scholar
  37. 37.
    He GS, Tan LS, Zheng Q, et al. Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev, 2008, 108: 1245–1330CrossRefGoogle Scholar
  38. 38.
    Xu L, Zhu H, Long G, et al. 4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. J Mater Chem C, 2015, 3: 9191–9196CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Jiang M, Han GC, et al. Solvent effect and two-photon optical properties of triphenylamine-based donor–acceptor fluorophores. J Phys Chem C, 2015, 119: 27630–27638CrossRefGoogle Scholar
  40. 40.
    Jiang D, Xue Z, Li Y, et al. Synthesis of donor–acceptor molecules based on isoxazolones for investigation of their nonlinear optical properties. J Mater Chem C, 2013, 1: 5694–5700CrossRefGoogle Scholar
  41. 41.
    Orlowski R, Banasiewicz M, Clermont G, et al. Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3, 2-b]pyrroles. Phys Chem Chem Phys, 2015, 17: 23724–23731CrossRefGoogle Scholar
  42. 42.
    Lin Y, Wang J, Zhang ZG, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  43. 43.
    Kozma E, Kotowski D, Catellani M, et al. Design of perylene diimides for organic solar cell: effect of molecular steric hindrance and extended conjugation. Mater Chem Phys, 2015, 163: 152–160CrossRefGoogle Scholar
  44. 44.
    Xu L, Liu C, Qin Z, et al. Core expansion of perylenetetracarboxdiimide dyes with anthraquinone units for electron-accepting materials. Eur J Org Chem, 2013, 2013: 300–306CrossRefGoogle Scholar
  45. 45.
    Duan L, Qiao J, Sun Y, et al. Strategies to design bipolar small molecules for OLEDs: donor-acceptor structure and non-donoracceptor structure. Adv Mater, 2011, 23: 1137–1144CrossRefGoogle Scholar
  46. 46.
    Endo A, Sato K, Yoshimura K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl Phys Lett, 2011, 98: 083302CrossRefGoogle Scholar
  47. 47.
    Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492: 234–238CrossRefGoogle Scholar
  48. 48.
    Zhang Q, Li B, Huang S, et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat Photon, 2014, 8: 326–332CrossRefGoogle Scholar
  49. 49.
    Zhang Q, Li J, Shizu K, et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J Am Chem Soc, 2012, 134: 14706–14709CrossRefGoogle Scholar
  50. 50.
    Zhang Q, Kuwabara H, Potscavage Jr. WJ, et al. Anthraquinonebased intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. J Am Chem Soc, 2014, 136: 18070–18081CrossRefGoogle Scholar
  51. 51.
    Xu L, Zhao Y, Long G, et al. Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Adv, 2015, 5: 63080–63086CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceShantou UniversityShantouChina
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Division of Chemistry and Biological Chemistry, School of Physical and Mathematic SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations