An Exterior Parabolic Differential Inequality Under Semilinear Dynamical Boundary Conditions


We study the existence and nonexistence of global weak solutions to the semilinear parabolic differential inequality

$$\begin{aligned} \partial _t u-\Delta u \ge |u|^p,\quad (t,x)\in (0,\infty )\times B^c, \end{aligned}$$

where \(p>1\), B is the closed unit ball in \({\mathbb {R}}^N\) (\(N\ge 2\)) and \(B^c\) is its complement, under the semilinear dynamical boundary conditions

$$\begin{aligned} \partial _t u+u \ge |u|^q +w(x), \quad (t,x)\in (0,\infty )\times \partial B \end{aligned}$$


$$\begin{aligned} \partial _t u+\partial _\nu u +\alpha u \ge |u|^q +w(x), \quad (t,x)\in (0,\infty )\times \partial B, \end{aligned}$$

where \(q>1\), \(\alpha \ge 0\), \(\partial _\nu :=\frac{\partial }{\partial \nu ^+}\), \(\nu ^+\) is the outward unit normal (relative to \(B^c\)) on \(\partial B\) and \(w\in L^1(\partial B)\), \(\int _{\partial B} w(x)\,\hbox {d}S_x\ge 0\). The cases \(\int _{\partial B} w(x)\,\hbox {d}S_x= 0\) and \(\int _{\partial B} w(x)\,\hbox {d}S_x>0\) are discussed separately.

This is a preview of subscription content, access via your institution.


  1. 1.

    Aiki, T.: Multi-dimensional Stefan problems with dynamic boundary conditions. Appl. Anal. 56, 71–94 (1995)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Amann, H., Fila, M.: A Fujita-type theorem for the Laplace equation with a dynamical boundary condition. Acta Math. Univ. Comen. 66, 321–328 (1997)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bandle, C., von Below, J., Reichel, W.: Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up. Rend. Lincei Math. Appl. 17, 35–67 (2006)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial Differ. Equ. 18, 1309–1364 (1993)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Filla, M., Quittner, P.: Large time behaviour of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition. Topics in nonlinear analysis. In: Progress in Nonlinear Differential Equations and Applications, vol. 35, pp. 251–272. Birkhauser, Basel (1999)

  6. 6.

    Gal, C.G., Warma, M.: Well-posedness and long term behavior of quasilinear parabolic equations with nonlinear dynamic boundary conditions. Differ. Integral Equ. 23, 327–358 (2010)

    MATH  Google Scholar 

  7. 7.

    Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc. R. Soc. Edinb. Sect. A 113, 43–60 (1989)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Igbida, N., Kirane, M.: A degenerate diffusion problem with dynamical boundary conditions. Math. Ann. 323(2), 377–396 (2002)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Jleli, M., Kirane, M., Samet, B.: Blow-up results for higher-order evolution differential inequalities in exterior domains. Adv. Nonlinear Stud. 19, 375–390 (2019)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Jleli, M., Samet, B.: New blow-up results for nonlinear boundary value problems in exterior domains. Nonlinear Anal. 178, 348–365 (2019)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kačur, J.: Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions. Math. Slovaca 30, 213–237 (1980)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Kirane, M.: Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type. Hokkaido Math. J. 21, 221–229 (1992)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kirane, M., Nabana, E., Pokhozhaev, S.I.: The absence of solutions of elliptic systems with dynamic boundary conditions. Differ. Equ. 38, 808–815 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kirane, M., Nabana, E., Pokhozhaev, S.I.: Nonexistence of global solutions to an elliptic equation with nonlinear dynamical boundary condition. Bol. Soc. Parana. Mat. 22, 9–16 (2004)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Kirane, M., Tatar, N.: Nonexistence of local and global solutions of an elliptic systems with time-fractional dynamical boundary conditions. Sib. Math. J. 48, 477–488 (2007)

    Article  Google Scholar 

  16. 16.

    Rault, J.F.: The Fujita phenomenon in exterior domains under dynamical boundary conditions. Asymptot. Anal. 66, 1–8 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Vazquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of locally reactive type. Semigroup Forum. 74(1), 1–40 (2007)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Vazquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive-diffusive type. J. Differ. Equ. 250, 2143–2161 (2011)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Vulkov, L.G.: Blow up for some quasilinear equations with dynamical boundary conditions of parabolic type. Appl. Math. Comput. 191(1), 89–99 (2007)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Yanga, L., Yang, M.: Long-time behavior of reaction-diffusion equations with dynamical boundary condition. Nonlinear Anal. 74, 3876–3883 (2011)

    MathSciNet  Article  Google Scholar 

Download references


M. Jleli is supported by Researchers Supporting Project Number (RSP-2019/57), King Saud University, Riyadh, Saudi Arabia.

Author information



Corresponding author

Correspondence to Bessem Samet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Yong Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, A., Jleli, M., Kirane, M. et al. An Exterior Parabolic Differential Inequality Under Semilinear Dynamical Boundary Conditions. Bull. Malays. Math. Sci. Soc. 44, 639–660 (2021).

Download citation


  • Semilinear parabolic equation
  • Semilinear dynamical boundary conditions
  • Exterior domain

Mathematics Subject Classification

  • 35K58
  • 35B44
  • 35B33