Invasion Waves in a Higher-Dimensional Lattice Competitive System with Stage Structure


In this paper, we use Schauder’s fixed point theorem to establish the existence of invasion waves in a stage-structured competitive system on higher-dimensional lattices. To illustrate our results, we construct a pair of upper and lower solutions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Al-Omari, J., Gourly, S.A.: Monotone travelling fronts in an age-structured reaction–diffusion model of a single species. J. Math. Biol. 45, 294–312 (2002)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Al-Omari, J., Gourly, S.A.: Stability and traveling fronts in Lotka–Volterra competition models with stage structure. SIAM J. Appl. Math. 63, 2063–2086 (2003)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Al-Omari, J., Gourly, S.A.: A nonlocal reaction–diffusion model for a single species with stage structure and distributed maturation delay. Euro. J. Appl. Math. 16, 37–51 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Al-Omari, J., Gourly, S.A.: Monotone wave-fronts in a structured population model with distributed maturation delay. IMA J. Appl. Math. 70, 858–879 (2005)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cahn, J.W., Mallet-Paret, J., Van Vleck, E.S.: Traveling wave solutions for systems of ODE’s on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59, 455–493 (1998)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chen, X., Guo, J.: Uniqueness and existence of travelling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146 (2003)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chen, X., Guo, J.: Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184, 549–569 (2002)

    Article  Google Scholar 

  8. 8.

    Cheng, C.P., Li, W.T., Wang, Z.C., Zheng, S.Z.: Traveling waves connecting equilibrium and periodic orbit for a delayed population model on a two-dimensional spatial lattice. Int. J. Bifurcat. Chaos Appl. Sci. Engrg. 26 1650049: 1–13 (2016)

  9. 9.

    Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149, 248–291 (1998)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gourley, S.A., Kuang, Y.: Wavefronts and global stability in a time-delayed population model with stage structure. Proc. R. Soc. Lond. Ser. A 459, 1563–1579 (2003)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Gourly, S.A., Kuang, Y.: A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol. 49, 188–200 (2004)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Guo, J.S., Wu, C.H.: Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J. Math. 45, 327–346 (2008)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Guo, J., Wu, C.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Huang, J., Lu, G., Ruan, S.: Existence of traveling wave fronts of delayed lattice differential equations. J. Math. Anal. Appl. 298, 538–558 (2004)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Huang, J., Lu, G.: Travelling wave solutions in delayed lattice dynamical system. Chin. Ann. Math. Ser. A 25, 153–164 (2004)

    Google Scholar 

  16. 16.

    Huang, J., Huang, L.: Traveling wavefronts in systems of delayed reaction diffusion equations on higher dimensional lattices. Acta Math. Appl. Sin. Ser. A 28, 100–113 (2005)

    MathSciNet  Google Scholar 

  17. 17.

    Hou, X.J., Leung, A.W.: Traveling wave solutions for a competitive reaction–diffusion system and their asymptotics. Nonlinear Anal. RWA 9, 2196–2213 (2008)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kan-on, Y.: Parameter dependence of propagation speed of traveling waves for competition–diffusion equations. SIAM J. Math. Anal. 26, 340–363 (1995)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kuang, Y., So, J.: Analysis of a delayed two-stage population with space-limited recruitment. SIAM J. Appl. Math. J 55, 1675–1695 (1995)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Leung, A.W., Hou, X.J., Li, Y.: Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities. J. Math. Anal. Appl. 338, 902–924 (2008)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Li, W.T., Zhang, L., Zhang, G.B.: Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. Ser. A 35, 1531–1560 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Lin, G., Li, W.: Traveling waves in delayed lattice dynamical systems with competition interactions. Nonlinear Anal. RWA 11, 3666–3679 (2010)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Liu, S., Chen, L., Liu, Z.: Extinction and permanence in nonautonomous competitive system with stage structure. J. Math. Anal. Appl. 274, 667–684 (2002)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Pan, S., Lin, G.: Invasion traveling wave solutions of a competitive system with dispersal. Bound. Value Probl. 2012, 1–11 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    So, J.W.H., Wu, J., Zou, X.: A reaction–diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. Ser. A 457, 1841–1853 (2001)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Weng, P.X.: Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete Contin. Dyn. Syst. Ser. B 12, 883–904 (2009)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Wang, Y., Li, X.: Some entire solutions to the competitive reaction diffusion system. J. Math. Anal. Appl. 430, 993–1008 (2015)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Wu, S.L., Liu, S.Y.: Travelling waves in delayed reaction–diffusion equations on higher dimensional lattices. J. Differ. Equ. Appl. 19, 384–401 (2013)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Wu, J., Zou, X.: Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations. J. Differ. Equ. 135, 315–357 (1997)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Xu, R., Chaplain, M., Davidson, F.: Travelling wave and convergence in stage-structured reaction–diffusion competitive models with nonlocal delays. Chaos Solitons Fractals 30, 974–992 (2006)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Yu, Z.X., Yuan, R.: Nonlinear stability of wavefronts for a delayed stage-structured population model on a 2-D lattice. Osaka J. Math. 50, 963–976 (2013)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Yu, Z.X., Zhang, W.G., Wang, X.M.: Spreading speeds and travelling waves for non-monotone time-delayed 2D lattice systems. Math. Comput. Model. 58, 1510–1521 (2013)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zhao, H.Q., Wu, S.L.: Wave propagation for a reaction–diffusion model with a quiescent stage on a 2D spatial lattice. Nonlinear Anal. RWA 12, 1178–1191 (2011)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Zhao, H.Q.: Asymptotic stability of traveling fronts in delayed reaction-diffusion monostable equations on higher-dimensional lattices. Electron. J. Differ. Equ. 2013(119), 1–15 (2013)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Zou, X.: Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices. In: Proceedings of the Third Mississippi State Conference on Difference Equations and Computational Simulations (Mississippi State, MS, 1997), pp. 211-221, Electron. J. Differ. Equ. Conf. 1, Southwest Texas State Univ., San Marcos, TX (1998)

Download references

Author information



Corresponding author

Correspondence to Kun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Grant No. 11971160) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 18B472).

Communicated by See Keong Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K. Invasion Waves in a Higher-Dimensional Lattice Competitive System with Stage Structure. Bull. Malays. Math. Sci. Soc. 43, 3711–3723 (2020).

Download citation


  • Higher-dimensional lattice
  • Stage structure
  • Traveling wave solution
  • Schauder’s fixed point theorem
  • Upper and lower solutions

Mathematics Subject Classification

  • 37L60
  • 34K10
  • 39A10