We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Two-Distance Vertex-Distinguishing Index of Sparse Subcubic Graphs | SpringerLink

Two-Distance Vertex-Distinguishing Index of Sparse Subcubic Graphs


The 2-distance vertex-distinguishing index \(\chi '_\mathrm{d2}(G)\) of a graph G is the minimum number of colors required for a proper edge coloring of G such that any pair of vertices at distance two have distinct sets of colors. It was conjectured that every subcubic graph G has \(\chi '_{\mathrm{d2}}(G)\le 5\). In this paper, we confirm this conjecture for subcubic graphs with maximum average degree less than \(\frac{8}{3}\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Akbari, S., Bidkhori, H., Nosrati, N.: \(r\)-Strong edge colorings of graphs. Discrete Math. 306, 3005–3010 (2006)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discrete Math. 21, 237–250 (2007)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Hatami, H.: \(\Delta \)+300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. Combin. Theory Ser. B 95, 246–256 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Huang, D., Lih, K.-W., Wang, W.: Legally \((\Delta +2)\)-coloring bipartite outerplanar graphs in cubic time. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.Z. (eds.) Combinatorial Optimization and Applications. Lecture Notes in Comput Sci, vol. 9486, pp. 617–632. Springer, Cham (2015)

    Chapter  Google Scholar 

  5. 5.

    Victor, L.K., Wang, W., Wang, Y., Chen, M.: 2-Distance vertex-distinguishing index of subcubic graphs. J. Combin. Optim. 36, 108–120 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Vučković, B.: Edge-partitions of graphs and their neighbor-distinguishing index. Discrete Math. 340, 3092–3096 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Wang, W., Huang, D., Wang, Y., Wang, Y., Du, D.Z.: A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs. J. Global Optim. 65, 351–367 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Wang, W., Wang, Y., Huang, D., Wang Y.: 2-Distance vertex-distinguishing edge coloring of graphs. Preprint (2016)

  9. 9.

    Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discrete Math. 338, 2006–2013 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Wang, W., Wang, Y.: Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J. Combin. Optim. 19, 471–485 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Zhang, L., Wang, W., Lih, K.-W.: An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph. Discrete Appl. Math. 162, 348–354 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15, 623–626 (2002)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Weifan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by NSFC (No. 11771402).

Communicated by Sandi Klavžar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Victor, L.K., Liu, J. & Wang, W. Two-Distance Vertex-Distinguishing Index of Sparse Subcubic Graphs. Bull. Malays. Math. Sci. Soc. 43, 3183–3199 (2020). https://doi.org/10.1007/s40840-019-00862-1

Download citation


  • Subcubic graph
  • Maximum average degree
  • Edge coloring
  • 2-Distance vertex-distinguishing index
  • AVD edge coloring

Mathematics Subject Classification

  • 05C15